Superconducting properties of Co1/Cu/Co2/Cu/Pb heterostructure on piezoelectric substrate PMN-PT

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of the PMN-PT piezoelectric substrate ([Pb(Mg1/3Nb2/3) O3]0.7 — [PbTiO3]0.3) on the superconducting properties of the PMN-PT/Co1/Cu/Co2/Cu/Pb thin-film heterostructure was studied. The change in superconducting transition temperature (Tc) was recorded when an electric field was applied to the PMN-PT substrate and in an external magnetic field. The maximum difference in Tc was 15 mK when an electric field of 1 kV/cm was applied. In an external magnetic field, the maximum difference in Tc was more than 80 mK when the mutual direction of the magnetizations of the ferromagnetic layers changed from parallel/antiparallel to perpendicular.

全文:

受限制的访问

作者简介

А. Kаmаshev

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

A. Validov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

S. Bol’shakov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

N. Garif’yanov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

I. Gаrifullin

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

参考

  1. Oh S., Youm D., Beasley M.R. et al. // Appl. Phys. Lett. 1997. V. 71. P. 2376.
  2. Tagirov L.R. // Phys. Rev. Lett. 1999. V. 83. Art. No. 2058.
  3. Buzdin A.I., Vedyayev A.V., Ryzhanova N.V. // Europhys. Lett. 1999. V. 48. P. 686.
  4. Gu J.Y., You C.Y., Jiang J.S. et al. // Phys. Rev. Lett. 2002. V. 89. Art. No. 267001.
  5. Moraru I.C., Pratt W.P., Birge N.O. // Phys. Rev. Lett. 2006. V. 96. Art. No. 037004.
  6. Potenza A., Marrows C.H. // Phys. Rev. B. 2005. V. 71. Art. No. 180503(R).
  7. Westerholt K., Sprungmann D., Zabel H. et al. // Phys. Rev. Lett. 2005. V. 95. Art. No. 097003.
  8. Steiner R., Ziemann P. // Phys. Rev. B. 2006. V. 74. Art. No. 094504.
  9. Pugach N.G., Kupriyanov M. Yu., Vedyayev A.V. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 134516.
  10. Leksin P.V., Garif’yanov N.N., Garifullin I.A. et al. // Appl. Phys. Lett. 2010. V. 97. Art. No. 102505.
  11. Buzdin A.I. // Rev. Mod. Phys. 2005. V. 77. P. 935.
  12. Blamire M.G., Robinson J.W.A. // J. Phys. Cond. Matter. 2014. V. 26. Art. No. 453201.
  13. Linder J., Robinson J.W.A. // Nature Phys. 2015. V. 11. P. 307.
  14. Bergeret F.S., Volkov A.F., Efetov K.B. // Phys. Rev. Lett. 2001. V. 86. Art. No. 4096.
  15. Eschrig M. // Physics Today. 2011. V. 64. P. 43.
  16. Efetov K.B., Garifullin I.A., Volkov A.F., Westerholt K. Magnetic heterostructures advances and perspectives in spinstructures and spintransport. Springer, 2007.
  17. Фоминов Я.В., Голубов А.А., Карминская Т.Ю. и др. // Письма в ЖЭТФ. 2010. Т. 91. С. 329; Fominov Ya.V., Golubov A.A., Karminskaya T. Yu. et al. // JETP Lett. 2010. V. 91. P. 308.
  18. Leksin P.V., Garif’yanov N.N., Garifullin I.A. et al. // Phys. Rev. Lett. 2012. V. 109. Art. No. 057005.
  19. Wu C.-T., Valls O.T., Halterman K. // Phys. Rev. B. 2012. V. 86. Art. No. 014523.
  20. Banerjee N., Smiet C.B., Smits R. et al. // Nature Commun. 2014. V. 5. Art. No. 3048.
  21. Leksin P.V., Garif’yanov N.N., Kamashev A.A. et al. // Phys. Rev. B2015. V. 91. Art. No. 214508.
  22. Garifullin I.A., Leksin P.V., Garif’yanov N.N. et al. // J. Magn. Magn. Mater. 2015. V. 373. P. 18.
  23. Gu Y., Halász G.B., Robinson J.W.A. et al. // Phys. Rev. Lett. 2015. V. 115. Art. No. 067201.
  24. Singh A., Voltan S., Lahabi K. et al. // J. Phys. Rev. X. 2015. V. 5. Art. No. 021019.
  25. Leksin P.V., Garif’yanov N.N., Kamashev A.A. et al. // Phys. Rev. B. 2016. V. 93. Art. No. 100502(R).
  26. Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1458.
  27. Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // Phys. Rev. B2019. V. 100. Art. No. 134511.
  28. Камашев А.А., Валидов А.А., Гарифьянов Н.Н. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 518; Kamashev A.A., Validov A.A., Garif’yanov N.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 448.
  29. Камашев А.А., Большаков С.А., Мамин Р.Ф. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1268; Kamashev A.A., Bolshakov C.A., Garifullin I.A et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1308.
  30. Камашев А.А., Гарифьянов Н.Н., Валидов А.А. и др. // Письма в ЖЭТФ 2019. Т. 110. № 5—6. С. 325 // Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // JETP Lett. 2019. V.110. No. 5. P. 342.
  31. Камашев А.А., Гарифьянов Н.Н., Валидов А.А. и др. // ЖЭТФ. 2020. Т. 158. № 2. С. 345. // Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // JETP. 2020. V. 131. No. 2. P. 311.
  32. Kamashev A.А., Garifullin I.A. // Письма в ЖЭТФ 2021. Т. 113. № 3—4. С. 210. // Kamashev A.А., Garifullin I.A. // JETP Lett. 2021. V.113. № 3. No. 3—4. P. 194.
  33. Валидов А.А., Насырова М.И., Хабибуллин Р.Р. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 523; Validov A.A., Nasyrova M.I., Khabibullin R.R. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 452.
  34. Kamashev A.A., Leontyev A.V., Garifullin I.A. et al. // Ferroelectrics 2022. V. 592. P. 123.
  35. Leksin P.V., Kamashev A.A., Schumann J. et al. // Nano Res. 2016. V. 9. P. 1005.
  36. Kamashev A.A., Garif’yanov N.N., Validov A.A. // Magnetism. 2023. V. 3. P. 204.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structures of the prepared samples with a circuit for measuring electrical resistance, where 1, 4 are current electrodes; 2, 3 are potential electrodes; 5, 6 are capacitive plates (capacitor plates) for applying an electric field to the piezoelectric substrate.

下载 (230KB)
3. Fig. 2. Superconducting transition curves for the PMN-PT/Co1(3 nm)/Cu(4 nm)/Co2(1 nm)/Cu(1.2 nm)/Pb(60 nm)/ /Si3N4 sample, measured without an electric field and with an applied electric field of 1 kV/cm.

下载 (70KB)
4. Fig. 3. Superconducting transition curves for the PMN-PT/Co1(3 nm)/Cu(4 nm)/Co2(1 nm)/Cu(1.2 nm)/Pb(60 nm)/Si3N4 sample measured at collinear and orthogonal (Tc) orientations of the magnetizations of the F-layers in an external magnetic field of H0 = 1 kOe. The inset shows the dependence of Tc on the angle α between the magnetizations of the F-layers in an external magnetic field of H0 = 1 kOe.

下载 (77KB)

版权所有 © Russian Academy of Sciences, 2024