Atomistic simulation of self-diffusion in nickel grain boundaries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The self-diffusion coefficient for symmetrical tilt boundaries and for the general type of grain boundaries in nickel has been calculated by atomistic simulation methods. The special tilt grain boundaries have been simulated in the bicrystal model, and the general type of grain boundaries in the nanocrystal model. The self-diffusion coefficient is presented as a temperature dependence. The activation energies of self-diffusion have been determined.

Full Text

Restricted Access

About the authors

M. G. Urazaliev

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: urazaliev@imp.uran.ru
Russian Federation, Ekaterinburg

M. E. Stupak

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: urazaliev@imp.uran.ru
Russian Federation, Ekaterinburg

V. V. Popov

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: urazaliev@imp.uran.ru
Russian Federation, Ekaterinburg

References

  1. Кульков В.Г. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1232; Kul’kov V.G. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1043.
  2. Звягинцева А.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1290; Zvyginceva A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1097.
  3. Mishin Y., Herzig C. // Mater. Sci. Eng. A. 1999. V. 260. P. 55.
  4. Kaur I., Mishin Y., Gust W. Fundamentals of grain and interphase boundary diffusion. John Wiley, 1995. 5536 p.
  5. Budke E., Herzig C., Prokofjev S., Shvindlerman L.S. // Mater. Sci. Forum. 1996. V. 207. P. 465.
  6. Suzuki A., Mishin Y. // Interface Sci. 2003. V. 11. P. 131.
  7. Nomura M., Adams J.B. // J. Mater. Res. 1992. V. 7. P. 3202.
  8. Keblinski P., Wolf D., Phillpot S.R., Gleiter H. // Philos. Mag. A. 1999. V. 79. P. 2735.
  9. Sorensen M.R., Mishin Y., Voter A.F. // Phys. Rev. B. 2000. V. 62. No. 6. P. 3658.
  10. Mendelev M.I., Zhang H., Srolovitz D.J. // J. Mater. Res. 2005. V. 20. P. 1146.
  11. Mishin Y., Asta M., Li J. // Acta Mater. 2010. V. 58. P. 1117.
  12. Bai X.M., Voter A.F., Hoagland R.G. et al. // Science. 2010. V. 327. P. 1631.
  13. Bai X.M., Vernon L.J., Hoagland R.G. et al. // Phys. Rev. B. 2012. V. 85. P. 214103.
  14. Uberuaga B.P., Vernon L.J., Martinez E., Voter A.F. // Sci. Reports. 2015. V. 5. No. 1. P. 9095.
  15. Mohammadzadeh R., Mohammadzadeh M. // J. Appl. Phys. 2018. V. 124. Art. No. 035102.
  16. Wang Y.J., Gao G.J.J., Ogata S. // Phys Rev. B. 2013. V. 88. Art. No. 115413.
  17. Mohammadzadeh M., Mohammadzadeh R. // Comput. Mater. Sci. 2017. V. 129. P. 239.
  18. Mohammadzadeh R. // J. Appl. Phys. 2019. V. 125. No. 13. P. 135103.
  19. Bokstein B.S. // NSMs. 1995. V. 6. P. 873.
  20. Yamakov P.V., Wolf D., Phillpot S.R., Gleiter H. // Acta Mater. 2002. V. 50. No. 1. P. 61.
  21. Shvindlerman L. S., Gottstein G., Ivanov V. A. et al. // J. Mater. Sci. 2006. V. 41. P. 7725.
  22. Plimpton S. // J. Comput. Phys. 1995. V. 117. No. 1. P. 1.
  23. Stukowski A. // Mater. Sci. Eng. 2010. V. 18. Art. No. 015012.
  24. Семенов М.Ю., Королев И.П., Арестов В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 948; Semenov M.Yu., Korolev I.P., Arestov V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 728.
  25. Stoller R.E., Tamm A., Béland L.K. et al. // J. Chem. Theory Comput. 2016. V. 12. No. 6. P. 2871.
  26. Уразалиев М.Г., Ступак М.Е., Попов В.В. // Физ. металл. металловед. 2021. Т. 122. С. 713; Urazaliev M.G., Stupak M.E., Popov V.V. // Phys. Metals. Metallogr. 2021. V. 122. P. 665.
  27. Polyak B.T. // USSR Comput. Math. Math. Phys. 1969. V. 9. No. 4. P. 94.
  28. Tschopp M.A., Solanki K.N., Gao F. et al. // Phys. Rev. B. 2012. V. 85. Art. No. 064108.
  29. Nosé S. // J. Chem. Phys. 1984. V. 81. No. 1. P. 511.
  30. Hoover W.G., Holian B.L. // Phys. Lett. Sect. A. 1996. V. 211. P. 253.
  31. Hirel P. // Comput. Phys. Comm. 2015. V. 197. P. 212.
  32. Wagih M., Schuh C.A. // Scripta Mater. 2023. V. 237. Art. No. 115716.
  33. Starikov S., Mrovec M., Drautz R. // Acta Mater. 2020. V.188. P. 560.
  34. Frolov T., Olmsted D., Asta M. et al. // Nature Commun. 2013. V. 4. No. 1. Art. No. 1899.
  35. Maxwell-Garnett J.C., Larmor J.Xii // Philos. Trans. Royal Soc. Lond. A. Contain. Pap. Math. Phys. Char. 1904. V. 203. No. 359–371. P. 385.
  36. Hart E.W. // Acta Metallurg. 1957. V. 5. No. 10. P. 597.
  37. Faken D., Jónsson H. // Comput. Mater. Sci. 1994. V. 2. No. 2. P. 279.
  38. Fultz B., Frase H. // Hyperfine Interact. 2000. V. 130. P. 81.
  39. Canon R.F, Stark J.P. // J. Appl. Phys. 1969. V. 40. No. 11. P. 4366.
  40. Бокштейн С.З., Кишкин С.Т., Мишин Ю.М., Разумовский И.М. // Докл. АН СССР. 1985. Т. 280. № 5. C. 1125.
  41. https://drive.google.com/drive/folders/117hFltef46fj3GGeHexiGVwocHSHv4J-?usp=drive_link
  42. http://dx.doi.org/10.13140/RG.2.2.23789.60641

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The model of a nickel bicrystal (a) and nanocrystal (b) used in this work, visualized using the CNA structure analyzer [37] in the OVITO program. The fcc lattice of nickel atoms is shown in green, while the bcc and hcp lattices are blue and red, respectively. The remaining atoms (grain boundary network) are shown in gray.

Download (27KB)
3. Fig. 2. The structure of the GBs studied in this work: Σ 9(114) (a), Σ 11(113) (b), Σ 3(111) (c), Σ 11(332) (d), Σ 9(221) (e). The structure was visualized using the CNA structure analyzer [37] in the OVITO program. The fcc lattice of nickel atoms is shown in green, while the bcc and hcp lattices are blue and red, respectively. The remaining atoms (grain boundary network) are shown in gray, and the hcp lattice is shown in red.

Download (87KB)
4. Fig. 3. An example of the trajectory of atomic displacement at a temperature of 1100 K in the Σ 11(113) GB from different angles (a, b), in a nanocrystal (c) and a graph of the dependence of the mean square displacement (d, d) for a bicrystal and a nanocrystal, respectively. The displacements are visualized using the Displacement vector modifier in the OVITO program.

Download (83KB)
5. Fig. 4. Temperature dependence of the self-diffusion coefficient in the nickel GBs studied in this work.

Download (35KB)

Copyright (c) 2024 Russian Academy of Sciences