Metamagnetism of itinerant electrons in the Hubbard model for the fcc lattice caused by the van Hove singularity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We investigated the itinerant metamagnetic phase transition in metals within the Hubbard model for a face-centered cubic lattice. The ratio of the transfer integral between the nearest and next-to-nearest neighbors is chosen to provide strong van Hove singularity in the density of states. The magnetic field dependencies of magnetization in the transition region are obtained, and the influence of model parameters on the character of the phenomenon is investigated.

Full Text

Restricted Access

About the authors

F. A. Vasilevskiy

Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences; Ural Federal University

Author for correspondence.
Email: fedorvasilevski@gmail.com
Russian Federation, Ekaterinburg; Ekaterinburg

P. A. Igoshev

Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: fedorvasilevski@gmail.com
Russian Federation, Ekaterinburg

V. Yu. Irkhin

Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: fedorvasilevski@gmail.com
Russian Federation, Ekaterinburg

References

  1. Wohlfarth E., Rhodes P. // Philos. Mag. 1962. V. 7. No. 83. P. 1817.
  2. Левитин Р.З., Маркосян А.С. // УФН. 1988. Т. 155. № 8. С. 623; Levitin R., Markosyan A.S. // Sov. Phys. Usp. 1988. V. 31. No. 8. P. 730.
  3. Shimizu M. // J. Physics. 1982. V. 43. No. 1. P. 155.
  4. Igoshev P.A., Irkhin V.Y. // Phys. Lett. A. 2022. V. 438. P. 128107.
  5. Игошев П.А., Ирхин В.Ю. // Письма в ЖЭТФ. 2019. Т. 110. № 11. С. 741; Igoshev P.A., Irkhin V.Y. // JETP Lett. 2019. V. 110. P. 727.
  6. Igoshev P.A., Irkhin V.Y. // Phys. Met. Metallogr. 2019. V. 120. P. 1282.
  7. Adachi K., Matsui M., Kawai M. // J. Phys. Soc. Japan. 1979. V. 46. No. 5. P. 1474.
  8. Mushnikov N.V., Goto T. // Phys. Met. Metallogr. 2002. V. 93. No. Suppl. 1. P. 88.
  9. Mushnikov N.V., Goto T. // J. Phys. Cond. Matter. 1999. V. 11. No. 41. P. 8095.
  10. Sakakibara T., Goto T., Yoshimura K. // Phys. Lett. A. 1986. V. 117. No. 5. P. 243.
  11. Goto T., Fukamichi K., Sakakibara T., Komatsu H. // Solid State Commun. 1989. V. 72. No. 9. P. 945.
  12. Aлександрян В.В., Лагутин А.С., Левитин Р.З. и др. // ЖЭТФ. 1985. T. 89. № 1. С. 271; Aleksandryan V., Lagutin A., Levitin R. et al. // Sov. Phys. JETP. 1985. V. 62. No. 1. P. 183.
  13. Габелко И.Л., Левитин Р.З., Маркосян А., Снегирев В. // Письма в ЖЭТФ. 1987. Т 45. № 7. С 360; Gabelko I., Levitin R., Markosyan A., Snegirev V. // JETP Lett. 1987. V. 45. No. 7. P. 458.
  14. Fukamichi K., Yokoyama T., Saito H. // Phys. Rev. B. 2001. V. 64. No. 13. Art. No. 134401.
  15. Mushnikov N.V., Goto T., Andreev A.V. et al. // Phys. Rev. B. 2002. V. 66. No. 6. Art. No. 064433.
  16. Yamada H., Mushnikov N.V., Goto T. // J. Phys. Chem. Solids. 2002. V. 63. No. 6-8. P. 1189.
  17. Mushnikov N.V. , Goto T., Kamishima K. et al. // Phys. Rev. B. 1999. V. 59. No. 10. P. 6877.
  18. Gama S., Coelho A.A., de Campos A. // Phys. Rev. Lett. 2004. V. 93. No. 23. Art. No. 237202.
  19. Pecharsky V.K., Gschneidner Jr K.A. // Phys. Rev. Lett. 1997. V. 78. No. 23. P. 4494.
  20. Tegus O., Brück E., Zhang L. // Phys. B. Cond. Matter. 2002. V. 319. No. 1–4. P. 174.
  21. Yamada H. // Phys. Rev. B. 1993. V. 47. No. 17. P. 11211.
  22. Goto T., Fukamichi K., Yamada H. // Phys. B. Cond. Matter. 2001. V. 300. No. 1–4. P. 167.
  23. Yamada H., Goto T. // Phys. Rev. B. 2003. V. 68. No. 18. Art. No. 184417.
  24. Goto T., Shindo Y., Takahashi H., Ogawa S. // Phys. Rev. B. 1997. V. 56. No. 21. P. 14019.
  25. Belitz D., Kirkpatrick T., Rollbühler J. // Phys. Rev. Lett. 2005. V. 94. No. 24. Art. No. 247205.
  26. Yamada H. // Phys. B. Cond. Matter. 2007. V. 391. No. 1. P. 42.
  27. Berridge A., Grigera S., Simons B., Green A. // Phys. Rev. B. 2010. V. 81. No. 5. Art. No. 054429.
  28. Wysokiński M.M., Abram M., Spalek J. // Phys. Rev. B. 2015. V. 91. No. 8. Art. No. 081108.
  29. Sandeman K., Lonzarich G., Schofield A. // Phys. Rev. Lett. 2003. V. 90. No. 16. Art. No. 167005.
  30. Berridge A. // Phys. Rev. B. 2011. V. 83. No. 23. Art. No. 235127.
  31. Yamase H. // New J. Phys. 2023. V. 25. No. 3. Art. No. 033004.
  32. Igoshev P., Katanin A. // Phys. Rev. B. 2023. V. 107. No. 11. Art. No. 115105.
  33. Neznakhin D.S., Radzivonchik D.I., Gorbunov D.I. et al. // Phys. Rev. B. 2020. V. 101. No. 22. Art. No. 224432.
  34. Radzivonchik D.I., Neznakhin D.S., Lukoyanov A.V. // J. Phys. Chem. Solids. 2022. V. 163. Art. No. 110552.
  35. Mория T. Спиновые флуктуации в магнетиках с коллективизированными электронами. М: Мир, 1988. 287 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Density of states ρ(𝜖) at τ = −0.52. The vertical lines limit the region where the metamagnetic transition is observed at 𝑈 = 1.50 𝑡. The inset shows the region of the density of states where metamagnetism was considered.

Download (13KB)
3. Fig. 2. Dependences of magnetization on the magnetic field at different concentration values at 𝑈 = 1.50 𝑡, 𝑇 = 2⋅10−4𝑡 for τ = −0.52. The dotted line indicates the curve corresponding to the value of 𝑛, at which the Stoner criterion (14) is satisfied. To estimate the magnitude of the magnetic field, the band width 𝑊 = 18𝑡 was chosen equal to 5 eV.

Download (21KB)
4. Fig. 3. Phase diagram in variables ℎс − 𝑛 and Δ𝑚 − 𝑛 𝑈 = 1.50𝑡, 𝑇 = 2⋅10−4𝑡, the solid line separates the two phases, the paramagnetic one is below, the ferromagnetic one is above.

Download (12KB)
5. Fig. 4. Phase diagram in variables U − 𝑛 at 𝑇 = 2⋅10−4𝑡 for τ = −0.52. The red lines limit the region of band metamagnetism, the black dotted line indicates the Stoner criterion (14), where 𝐸F is taken for the paramagnetic phase for a given 𝑛.

Download (12KB)

Copyright (c) 2024 Russian Academy of Sciences