Features of microwave photoconductance of quantum point contact and silicon field effect transistor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Quantum point contacts with a short (100 nm) channel in a high mobility two-dimensional electron gas of GaAs/Al(Ga)As heterostructures and a short-channel p-type field-effect transistor in a silicon-on-insulator structure were fabricated and studied experimentally and by modeling at the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences in order to study the response of samples to weak irradiation by an electromagnetic field with a frequency of ~2 GHz. This response in the tunnel mode at a temperature of 4.2 K turned out to be gigantic and was observed against the background of features caused by impurity disorder.

Full Text

Restricted Access

About the authors

A. S. Jaroshevich

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk

V. A. Tkachenko

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

Z. D. Kvon

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

N. S. Kuzmin

Novosibirsk State University

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk

O. A. Tkachenko

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk

D. G. Baksheev

Novosibirsk State University

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk

I. V. Marchishin

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk

A. K. Bakarov

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk

E. E. Rodyakina

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

V. A. Antonov

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk

V. P. Popov

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk

A. V. Latyshev

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: jarosh@isp.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Van Wees B.J., Van Houten H., Beenakker C.W.J. et al. // Phys. Rev. Lett. 1988. V. 60. No. 9. P. 848.
  2. Wharam D., Thornton T.J., Newbury R. et al. // J. Physics C. 1988. V. 2. No. 8. Art. No. L209.
  3. Büttiker M. // Phys. Rev. B. 1990.V. 41. No. 11. P. 7906.
  4. Thomas K.J., Nicholls J.T., Appleyard N.J. et al. // Phys. Rev. B. 1998. V. 58. No. 8. P. 4846.
  5. Kristensen A., Bruus H., Hansen A.E. et al. // Phys. Rev. B. 2000. V. 62. No. 16. P. 10950.
  6. Tkachenko O.A., Tkachenko V.A., Baksheyev D.G. et al. // J. Appl. Phys. 2001. V. 89. No. 9. P. 4993.
  7. Renard V.T., Tkachenko O.A., Tkachenko V.A. et al. // Phys. Rev. Lett. 2008. V. 100. No. 18. Art. No. 186801.
  8. Ткаченко О.А., Ткаченко В.А. // Письма в ЖЭТФ. 2012. Т. 96. № 11. С. 804; Tkachenko O.A., Tkachenko V.A. // JETP Lett. 2013. V. 96. No. 11. P. 719.
  9. Smith L.W., Al-Taie H., Lesage A.A.J. et al. // Phys. Rev. Appl. 2016. V. 5. Art. No. 044015.
  10. Pokhabov D.A., Pogosov A.G., Zhdanov E.Yu. et al. // Appl. Phys. Lett. 2018. V.112. No. 8. Art. No. 082102.
  11. Srinivasan A., Farrer I., Ritchie D.A. et al. // Appl. Phys. Lett. 2020. V. 117. No. 18. Art. No. 183101.
  12. Hofstein S.R., Heiman F.P. // Proc. IEEE. 1963. V. 51. No. 9. P. 1190.
  13. Sze S.M. Physics of semiconductor devices. New York: John Willey, 1981. 868 p.
  14. Французов А.А., Бояркина Н.И., Попов В.П. // ФТП. 2008. Т. 42. № 2. С. 212; Frantsuzov A.A., Boyarkina N.I., Popov V.P. // Semiconductors. 2008. V. 42. No. 2. P. 215.
  15. Ando T., Fowler A.B. Stern F. // Rev. Mod. Phys. 1982. V. 54. No. 2. P. 437.
  16. Arnold E. // Appl. Phys. Lett. 1974. V. 25. No.12. P. 705.
  17. Kwasnick R.F., Kastner M.A., Meingailis J. et al. // Phys. Rev. Lett. 1984. V. 52. No. 15. P. 224.
  18. Fowler A.B., Wainer J.J., Webb R.A. // IBM J. Res. Dev. 1988. V. 32. No. 3. P. 372.
  19. Popović D., Fowler A.B., Washburn S. et al. // Phys. Rev. Lett. 1991. V. 67. No. 20. P. 2870.
  20. de Graaf C., Wildöer J.W.G., Caro J. et al. // Surf. Science. 1992. V. 263. No. 1–3. P. 409.
  21. Specht M., Sanquer M., Caillat C. et al. // In: IEEE International Electron Devices Meeting 1999. Technical Digest (Cat. No. 99CH36318). 1999. P. 383.
  22. Wacquez R., Vinet M., Pierre M., Roche B. et al. // IEEE Symp. VLSI Technol. 2010. P. 193.
  23. Paz B.C., Le Guevel L., Cassé M. et al. // IEEE 33rd Int. Conf. Microelectron. Test Struct. 2020. P. 1.
  24. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1974. 752 с.
  25. Altshuler B.L., Lee P.A., Webb R.A. Mesoscopic phenomena in solids. Amsterdam, 1991.
  26. Landauer R. // In: Localization interactions and transport phenomena. Heidelberg: Springer, 1985. P. 38.
  27. Fisher D.S., Lee P.A. // Phys. Rev. B. 1981. V. 23. P. 6851.
  28. Datta S. Electronic transport in mesoscopic systems. Cambridge: Cambridge University Press, 1995. 377 p.
  29. Imry Y. Introduction to mesoscopic physics. NY.: Oxford University Press, 1997.
  30. Sohn L., Kouwenhoven L.P., Schön G. Mesoscopic electron transport. Dordrecht: Kluwer, 1997.
  31. Tkachenko O.A., Tkachenko V.A., Kvon Z.D. et al. // In: Advances in semiconductor nanostructures. Growth, characterization, properties and applications. Ch. 6. Elsevier, 2017. P. 131.
  32. Regul J., Hohls F., Reuter D. // Physica E. 2004. V. 22. No. 1–3. P. 272.
  33. Ferrari G., Prati E., Fumagalli et al. // Proc. EuMC. 2005. V. 2. P. 4.
  34. Prati E., Fanciulli M., Calderoni A. et al. // Phys. Lett. A. 2007. V. 370. No. 5–6. P. 491.
  35. Naser B., Ferry D.K., Heeren J. et al. // Physica E. 2007. V. 40. No. 1. P. 84.
  36. Hohls F., Fricke C., Haug R.J. // Physica E. 2008. V. 40. No. 5. P. 1760.
  37. Wang Z., Chen D., Ota T., Fujisawa T. // Japan. J. Appl. Phys. 2009. V. 48. No. 4C. Art. No. 04C148.
  38. Kamata H., Ota T., Fujisawa T. // Japan. J. Appl. Phys. 2009. V. 48. No. 4C. Art. No. 04C149.
  39. Wang P., He J. // Physica E. 2019. V. 108. P. 160.
  40. Jarratt M.C., Waddy S.J., Jouan A. et al. // Phys. Rev. Appl. 2020. V. 14. No. 6. Art. No. 064021.
  41. Ткаченко В.А., Ярошевич А.С., Квон З.Д. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 2. С. 108; Tkachenko V.A., Yaroshevich A.S., Kvon Z.D. et al. // JETP Lett. 2021. V. 114. P. 110.
  42. Кузьмин Н.С., Ярошевич А.С., Квон З.Д. и др. // ФТТ. 2023. Т. 65. № 10. С. 1842; Kuzmin N.S., Jaroshevich A.S., Kvon Z.D. et al. // Phys. Solid State. 2023. V. 65. No. 10. P. 1765.
  43. Jaroshevich A.S., Kvon Z.D., Tkachenko V.A. et al. // Appl. Phys. Lett. 2024. V. 124. No. 6. Art. No. 063501.
  44. Growth C. W., Wimmer M., Akhmerov A. R. et al. // New J. Phys. 2014. V. 16. No. 6. Art. No. 063065.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of 4-terminal measurements of the QPC conductance (a). Micrograph of a part of the Hall bridge; the removed part shows the split gate of the QPC (b). Micrograph of a sample with a PT; the removed part shows a fragment of the gate (c). Schematic representation of a vertical section of the PT indicating the materials and doping levels of the n- and p-types (d).

Download (36KB)
3. Fig. 2. Dependences G(Vg, P) measured at T = 4.2 K for 3 samples with a QPC: the same sample in a type 3 heterostructure for two different coolings (a, d); samples in type 1 and 2 heterostructures, respectively (b, c).

Download (60KB)
4. Fig. 3. Dependences G(EF–U0, A) for T = 0 in the quasi-one-dimensional model of transport through an idealized QPC for two different values of the parameter δV : δV = 0; (a) 0 < δV ≈ V (b) (in-phase high-frequency oscillations of the voltage between the potentiometric contacts and the potential barrier under the gate relative to EF).

Download (26KB)
5. Fig. 4. The dependence G(Vg, P) measured at T = 4.2 K for a silicon FET (a). The calculated dependence of the source-drain gap conductance on the variables U0 and A in the model of two-dimensional hole transport through the FET for T = 0 and EF = 12 meV taking into account the disorder in the two-dimensional potential and the parameter Gs ≡ 1/Rs(A) (b).

Download (35KB)

Copyright (c) 2024 Russian Academy of Sciences