Capabilities of optothermal traps for space ordering of microscopic objects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental results on the formation of ordered structures of latex microparticles with diameters of 3 and 5 micrometers using arrays of point optothermal traps are presented. To implement these traps, the working area of the phase mask was divided into sub-elements, for each of which a specific distribution of phase delay of the prism (wedge) was specified.

Full Text

Restricted Access

About the authors

А. M. Mayorova

Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: mayorovaal@smr.lebedev.ru

Samara Branch

Russian Federation, Samara

S. P. Kotova

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

Russian Federation, Samara

N. N. Losevsky

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

Russian Federation, Samara

D. V. Prokopova

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

Russian Federation, Samara

S. A. Samagin

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

Russian Federation, Samara

References

  1. Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
  2. Jing P., Liu Y., Keeler E.G. et al. // Biomed. Opt. Express. 2018. V. 9. P. 771.
  3. Li P., Yu H., Wang X. et al. // Opt. Express. 2021. V. 29. P. 11144.
  4. Lu F., Gong L., Kuai Y. et al. // Photon. Res. 2022. V. 10. P. 14.
  5. Guex A.G., Di Marzio N., Eglin D. et al. // Mater. Today Bio. 2021. V. 10. Art. No. 100110.
  6. Yoo J., Kim J., Lee J., Kim H.H. // iScience. 2023. V. 26. No. 11. Art. No. 108178.
  7. Минаев Н.В., Юсупов В.И., Чурбанова Е.С. и др. // Прибор. и техн. экспер. 2019. № 1. С. 153.
  8. Юсупов В.И., Жигарьков В.С., Чурбанова Е.С. и др. // Квант. электрон. 2017. Т. 47. № 12. С. 1158.
  9. Zhang D., Ren Y., Barbot A. et al. // Matter. 2022. V. 5. No. 10. P. 3135.
  10. Song Y., Yin J., Huang W., et al. // Trends Analyt. Chem. 2023. Art. No. 117444.
  11. Rodrigo J.A., Martínez-Matos Ó., Alieva T. // Photon. Res. 2022. V. 10. P. 2560.
  12. Afanasiev K., Korobtsov A., Kotova S. et al. // J. Phys. Conf. Ser. 2013. V. 414. Art. No. 012017.
  13. Rubinsztein-Dunlop H., Forbes A., Berry M. et al. // J. Optics. 2017. V. 19. Art. No. 013001.
  14. Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1685, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1434.
  15. Kotova S.P., Коrobtsov A.V., Losevsky N.N. et al. // J. Quant. Spectrosc. Radiat. 2021. V. 268. Art. No. 107641.
  16. Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1682, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1767.
  17. Прокопова Д.В., Котова С.П., Самагин С.А. // Изв. РАН. Сер. Физ. 2021. Т. 85. № 8. С. 1205, Prokopova D.V., Kotova S.P., Samagin S.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 928.
  18. Zemánek P., Volpe G., Jonáš A., Brzobohatý O. // Adv. Opt. Photon. 2019. V. 11. No. 3. P. 577.
  19. Zenteno-Hernandez J.A., Lozano J.V., Sarabia-Alonso J.A. et al. // Opt. Lett. 2020. V. 45. P. 3961.
  20. Hosokawa Ch., Tsuji T., Kishimoto T. et al. // J. Phys. Chem. C. 2020. V. 124. P. 8323.
  21. Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
  22. Kollipara P., Chen Z., Zheng Y. // ACS Nano. 2023. V. 17. P. 7051.
  23. Chen Z., Li J., Zheng Y. // Chem. Rev. 2021. V. 122. P. 3122.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phase distributions (a; c; d; g) and the corresponding intensity distributions (b; d; f; h).

Download (692KB)
3. Fig. 2. Phase masks and corresponding intensity distributions in the observation plane near the focal plane of the lens. Distances are indicated as fractions of the focal length of the lens.

Download (1MB)
4. Fig. 3. Stills from a video illustrating the process of transferring micro-objects to an array of light traps and aligning them into intensity maxima. Top row: 4×4 trap; particle diameter: 3 μm. Bottom row: hexagonal array of 19 traps; particle diameter: 5 μm.

Download (476KB)

Copyright (c) 2024 Russian Academy of Sciences