Thermally stimulated luminescence of colloidal InP/ZnS quantum dots

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For the first time, spectrally resolved thermally stimulated luminescence in core/shell colloidal InP/ZnS quantum dots after exposure to UV radiation at 7 K is studied. Analysis of the measured luminescence spectra shows that the recombination of charge carriers localized under irradiation and released upon further stimulation occurs with the participation of defect centers based on dangling indium and phosphorus bonds. Using the initial growth method and the formalism of general-order kinetics, the kinetic features of possible thermally stimulated mechanisms are analyzed, and the energy characteristics of the corresponding capture centers are estimated. Active traps in the studied nanocrystals are found to be characterized by close activation energy values in the range of 25–29 meV.

About the authors

S. S Savchenko

NANOTECH Centre, Ural Federal University

Email: s.s.savchenko@urfu.ru
Yekaterinburg, Russia

A. S Vokhminsev

NANOTECH Centre, Ural Federal University

Yekaterinburg, Russia

I. A Weinstein

NANOTECH Centre, Ural Federal University; Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia; Yekaterinburg, Russia

References

  1. Ремпель А.А., Овчинников О.В., Вайнштейн И.А. и др. // Успехи химии. 2024. Т. 93. № 4. Art. No. RCR5114
  2. Rempel A.A., Ovchinnikov O.V., Weinstein I.A. et al. // Russ. Chem. Rev. 2024. V. 93. No. 4. Art. No. RCR5114.
  3. Аржанов А.И., Савостьянов А.О., Магарян К.А. и др. // Фотоника. 2021. Т. 15. № 8. C. 622
  4. Arzhanov A.I., Savostianov A.O., Magaryan K.A. et al. // Photonics Russ. 2021. V. 15. No. 8. P. 622.
  5. Shirasaki Y., Supran G.J., Bawendi M.G., Bulovic V. // Nature Photon. 2013. V. 7. No. 1. P. 13.
  6. Almeida G., Ubbink R.F., Stam M., du Fossé I., Houtepen A.J. // Nature Rev. Mater. 2023. V. 8. No. 11. P. 742.
  7. Zhang L., Xu H., Zhang X. et al. // Inorg. Chem. 2024. V. 63. No. 10. P. 4604.
  8. Nguyen H.T., Das R., Duong A.T., Lee S. // Opt. Mater. 2020. V. 109. Art. No. 110251.
  9. Еськова А.Е., Аржанов А.И., Магарян К.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84.№1. С. 48
  10. Eskova A.E., Arzhanov A.I., Magaryan K.A. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 1. P. 40.
  11. Tang X., Ackerman M.M., Shen G., Guyot-Sionnest P. // Small. 2019. V. 15. No. 12. Art. No. 1804920.
  12. Слюсаренко Н.В., Герасимова М.А., Парфенова Е.В., Слюсарева Е.А. // Изв. РАН. Сер. физ. 2024. Т. 88. № 6. C. 991
  13. Slyusarenko N.V., Gerasimova M.A., Parfenova E.V., Slyusareva E.A. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 6. P. 968.
  14. Аржанов А.И., Савостьянов А.О., Магарян К.А. и др. // Фотоника. 2022. Т. 16. № 2. С. 96
  15. Arzhanov A.I., Savostianov A.O., Magaryan K.A. et al. // Photonics Russ. 2022. V. 16. No. 2. P. 96.
  16. Biadala L., Siebers B., Beyazit Y. et al. // ACS Nano. 2016. V. 10. No. 3. P. 3356.
  17. Azhniuk Y.M., Lapushansky V.V., Prymak M.V. et al. // J. Nano–Electron. Phys. 2016. V. 8. No. 3. Art. No. 03024.
  18. Katsaba A.V., Ambrozevich S.A., Vitukhnovsky A.G. et al. // J. Appl. Phys. 2013. V. 113. No. 18. Art. No. 184306.
  19. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. // J. Luminescence. 2022. V. 242. Art. No. 118550.
  20. Вайнштейн И.А., Савченко С.С. // Изв. АН. Сер. хим. 2023. Т. 72. № 2. C. 534
  21. Weinstein I.A., Savchenko S.S. // Russ. Chem. Bull. 2023. V. 72. No. 2. P. 534.
  22. Savchenko S., Vokhmintsev A., Karabanalov M. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. No. 27. P. 18727.
  23. Efros A.L.L., Rosen M. // Phys. Rev. Lett. 1997. V. 78. No. 6. P. 1110.
  24. Osad'ko I.S., Eremchev I.Y., Naumov A.V. // J. Phys. Chem. C. 2015. V. 119. No. 39. P. 22646.
  25. Eychmüller A. // J. Phys. Chem. B. 2000. V. 104. No. 28. P. 6514.
  26. Eremchev I.Y., Osad'ko I.S., Naumov A.V. // J. Phys. Chem. C. 2016. V. 120. No. 38. P. 22004.
  27. Shilov A., Savchenko S., Vokhmintsev A. et al. // Materials. 2024. V. 17. No. 22. Art. No. 5587.
  28. Eremchev I.Y., Tarasevich A.O., Kniazeva M.A. et al. // Nano Lett. 2023. V. 23. No. 6. P. 2087.
  29. Кацаба А.В., Федянин В.В., Амброзевич С.А. и др. // Физ. и техн. полупровод. 2013. Т. 47. № 10. С. 1339
  30. Katsaba A.V., Fedyanin V.V., Ambrozevich S.A. et al. // Semiconductors. 2013. V. 47. No. 10. P. 1328.
  31. Smirnov M.S., Buganov O.V., Tikhomirov S.A. et al. // J. Nanopart. Res. 2017. V. 19. No. 11. Art. No. 376.
  32. Перепелица А.С., Овчинников О.В., Смирнов М.С. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 6. С. 817
  33. Perepelitsa A.S., Ovchinnikov O.V., Smirnov M.S. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 6. P. 687.
  34. Grevtseva I., Chirkov K., Ovchinnikov O. et al. // J. Luminescence. 2024. V. 267. Art. No. 120348.
  35. Voznyy O., Thon S.M., Ip A.H., Sargent E.H. // J. Phys. Chem. Lett. 2013. V. 4. No. 6. P. 987.
  36. Koscher B.A., Swabeck J.K., Bronstein N.D., Alivisatos A.P. // J. Amer. Chem. Soc. 2017. V. 139. No. 19. P. 6566.
  37. Kirkwood N., Monchen J.O.V., Crisp R.W. et al. // J. Amer. Chem. Soc. 2018. V. 140. No. 46. P. 15712.
  38. Ekimov A.I. // Phys. Scripta. 1991. V. 39. P. 217.
  39. Dekanozishvili G., Driaev D., Kalabegishvili T., Kvatchadze V. // J. Luminescence. 2009. V. 129. No. 10. P. 1154.
  40. Tessier M.D., Dupont D., De Nolf K. et al. // Chem. Mater. 2015. V. 27. No. 13. P. 4893.
  41. Савченко С.С., Вохминцев А.С., Вайнштейн И.А. // Письма в ЖТФ. 2017. Т. 43. № 6. C. 39
  42. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. // Tech. Phys. Lett. 2017. V. 43. No. 3. P. 297.
  43. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. // Opt. Mater. Express. 2017. V. 7. No. 2. P. 354.
  44. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. // Nanomaterials. 2019. V. 9. No. 5. Art. No. 716.
  45. Grabelle M., Spieles M., Lesnyak V. et al. // Analyt. Chem. 2009. V. 81. No. 15. P. 6285.
  46. Cho E., Kim T., Choi S. et al. // ACS Appl. Nano Mater. 2018. V. 1. No. 12. P. 7106.
  47. Janke E.M., Williams N.E., She C. et al. // J. Amer. Chem. Soc. 2018. V. 140. No. 46. P. 15791.
  48. Wang C., Wang Q., Zhou Z. et al. // J. Luminescence. 2020. V. 225. Art. No. 117354.
  49. McKeever S.W.S. A Course in Luminescence Measurements and Analyses for Radiation Dosimetry. Chichester: John Wiley & Sons Ltd, 2022. 412 p.
  50. Kitis G., Gomez-Ros J.M., Tuyn J.W.N. // J. Phys. D. Appl. Phys. 1998. V. 31. No. 19. P. 2636.
  51. Weinstein I.A., Vokhmintsev A.S., Minin M.G. et al. // Radiat. Meas. 2013. V. 56. P. 236.
  52. Vokhmintsev A.S., Petrenyov I.A., Kamalov R.V. et al. // J. Luminescence. 2022. V. 252. Art. No. 119412.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences