Growth of relativistic electron fluxes in the outer radiation belt according to data of the Arktika-M satellite (No. 1) during magnetic storms in October-November 2021

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper analyzes variations in electron fluxes of various energies from 0.1 MeV to 2 MeV for CIR and CME magnetic storms in October-November 2021 according to data from the Russian satellites “Arktika-M” (No. 1) and “Elektro-L” (No. 2), as well as the satellite GOES-17. The analysis shows that during the stronger CME storm the level of relativistic electron fluxes was noticeably higher than during the weaker CIR storm both in geostationary orbit and in lower L-shells.

Sobre autores

V. Belakhovsky

Polar Geophysical Institute; Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences

Email: belakhov@mail.ru
Apatity, Russia; Irkutsk, Russia

V. Pilipenko

Institute of Physics of the Earth of the Russian Academy of Sciences

Moscow, Russia

O. Kozyreva

Institute of Physics of the Earth of the Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Pilipenko V., Yagova N., Romanova N., Allen J. // Adv. Space Res. 2006. V. 37. No. 6. P. 1192.
  2. O’Brien T.P., McPherron R.L., Sorrette D. et al. // J. Geophys. Res. 2001. V. 106. No. A8. P. 15533.
  3. Потапов А.С., Цэгмэд Б., Рыжакова Л.В. // Косм. иссл. 2012. Т. 50. № 2. С. 130
  4. Potapov A.S., Tsegmed B., Ryzhakova L.V. // Cosmic Res. 2012. V. 50. No. 2. P. 124.
  5. Pilipenko V., Kozyreva O., Belakhovsky V. et al. // Proc. Royal. Soc. A. 2010. V. 466. No. 2123. P. 3363.
  6. Thorne R.M., Li W., Ni B. et al. // Nature. 2013. V. 504. P. 411.
  7. Тверской Б.А. // Геомат. и аэрономия. 1997. Т. 37. № 5. C. 29.
  8. Antonova E.E., Stepanova M.V. // Earth Planets Space. 2015. V.67. Art. No. 148.
  9. O’Brien T.P., Lorentzen K.R., Mann I.R. et al. // J. Geophys. Res. 2003. V. 108. No. A8. Art. No. 1329.
  10. Jaynes A.N., Baker D.N., Singer H.J. et al. // J. Geophys. Res. 2015. V. 120. Art. No. 7240.
  11. Simms L.E., Engebretson M.J., Rodger C.J. et al. // J. Geophys. Res. 2021. V. 126. Art. No. e2020JA028755.
  12. Belakhovsky V.B., Pilipenko V.A., Antonova E.E. et al. // Earth Planets Space. 2023. V.75. Art. No. 189.
  13. Gonzalez W.D., Joselyn J.A., Kamide Y. et al. // J. Geophys. Res. 1994. V.99. No. A4. P. 5771.
  14. Tsurutani B.T., Gonzalez W.D., Gonzalez A.L.C. et al. // J. Geophys. Res. 2006. V. 111. Art. No. A07S01.
  15. Borovsky J.E., Denton M.H. // J. Geophys. Res. 2006. V. 111. Art. No. A07S08.
  16. Белаховский В.Б., Пилипенко В.А., Сахаров Я.А., Селиванов В.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 2. C. 271
  17. Belakhovsky V.B., Pilipenko V.A., Sakharov Ya.A., Selivanov V.N. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 2. P. 236.
  18. Белаховский В.Б., Будников П.А., Калишин А.С. и др. // Солн.-земн. физ. 2023. Т. 9. № 3. С. 58
  19. Belakhovsky V.B., Budnikov P.A., Kalishin A.S. et al. // Sol.-Terr. Phys. 2023. V. 9. No. 3. P. 54.
  20. Kataoka R., Miyoshi Y. // Space Weather. 2006. V. 4. Art. No. S09004.
  21. Оседло В.И., Калегаев В.В., Рубинштейн И.А. и др. // Косм. иссл. 2022. T. 60. № 6. С. 439
  22. Osedlo V.I., Kalegaev V.V., Rubinshtein I.A. et al. // Cosmic Res. 2022. V. 60. No. 6. P. 406.
  23. Pilipenko V.A., Kozyreva O.V., Engebretson M.J., Soloviev A.A. // Russ. J. Earth Sci. 2017. V. 17. Art. No. E51004.
  24. Kasahara Y., Kasaba Y., Kojima H. et al. // Earth Planets Space. 2018. V. 70. Art. No. 86.
  25. Li X., Baker D.N., Temerin M. et al. // J. Geophys. Res. 1997. V. 102. No. A7. P. 14123.
  26. Shen X.-C., Hudson M.K., Jaynes A. et al. // J. Geophys. Res. 2017. V. 122. P. 8327.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025