Chiral thin film structures based on arrays of cobalt nanospirals obtaned by oblique deposition

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of experimental studies of chiral thin film structures based on arrays of cobalt nanospirals obtained by oblique angle deposition are presented. It has been shown that in the conditions of electron-beam evaporation on rotating tilted substrate arrays of nanospirals winded in the same direction are formed. By varying substrate rotation speed it is possible to change geometrical sizes of those helixes (helix pitch, helix radius). As obtained metasurface showed distinct asymmetry of optical characteristics at the reflection of right and left circular polarized light.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Trushin

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ostrushin@mail.ru

Yaroslavl Branch

Ресей, Yaroslavl

I. Fattakhov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru

Yaroslavl Branch

Ресей, Yaroslavl

A. Popov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru

Yaroslavl Branch

Ресей, Yaroslavl

L. Mazaletsky

Valiev Institute of Physics and Technology of the Russian Academy of Sciences; Demidov Yaroslavl State University

Email: ostrushin@mail.ru

Yaroslavl Branch

Ресей, Yaroslavl; Yaroslavl

R. Gaidukasov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru
Ресей, Moscow

A. Miakonkikh

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Gansel J.K., Thiel M., Rill M.S. et al. // Science. 2009. V. 325. P. 1513.
  2. Gibbs J. G., Mark A.G., Eslami S. et al. // Appl. Phys. Lett. 2013. V. 103. Art. No. 213101.
  3. Lee S.H., Singh D.P., Sung J.H. et al. // Sci. Reports. 2016. V. 6. P. 19580.
  4. Kim J., Rana A.S., Kim Y. et al. // Sensors. 2021. V. 21. P. 4381.
  5. Трушин О.С., Попов А.А., Пестова А Н. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 650. Trushin O.S., Popov A.A., Pestova A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 542.
  6. Fujiwara H. Spectroscopic ellipsometry principles and applications. John Wiley & Sons Ltd. 2007.
  7. Мяконьких А.В., Смирнова Е.А., Клементе И.Э. // Микроэлектроника. 2021. Т. 50. № 4. С. 264. // Miakonkikh A.V., Smirnova E.A., Klemente I.E. // Russ. Microelectron. 2021. V. 50. Nо. 4. P. 230.
  8. Трушин О.С., Фаттахов И.C., Попов А.А. и др. // ФТТ. 2023. Т. 65. № 6. С. 996. // Trushin O.S., Fattakhov I.S., Popov A.A. et al. // Phys. Solid State 2023. V. 65. No. 6. P. 953.
  9. Faryad M., Lakhtakia A. // Adv. Opt. Photon. 2014. V. 6. P. 225.
  10. Schaferling M. Chiral nanophotonics. SSOS. V. 205. Springer International Publishing, 2017.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Microscopic images of nanostructured Co/Si films obtained at different substrate rotation speeds: 0.3 rpm – cross section (a) and top view (b), 0.6 rpm – cross section (c), 1.6 rpm – cross section (d).

Жүктеу (40KB)
3. Fig. 2. Dependences of the degree of polarization of the reflected wave on the wavelength of the used radiation for two types of incident circularly polarized waves (right-handed-R and left-handed-L) for samples with different rotation speeds: 0.2 (a), 0.3 (b), 0.6 (c) and 1.6 rpm (d).

Жүктеу (27KB)

© Russian Academy of Sciences, 2024