Chiral thin film structures based on arrays of cobalt nanospirals obtaned by oblique deposition

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of experimental studies of chiral thin film structures based on arrays of cobalt nanospirals obtained by oblique angle deposition are presented. It has been shown that in the conditions of electron-beam evaporation on rotating tilted substrate arrays of nanospirals winded in the same direction are formed. By varying substrate rotation speed it is possible to change geometrical sizes of those helixes (helix pitch, helix radius). As obtained metasurface showed distinct asymmetry of optical characteristics at the reflection of right and left circular polarized light.

全文:

受限制的访问

作者简介

O. Trushin

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ostrushin@mail.ru

Yaroslavl Branch

俄罗斯联邦, Yaroslavl

I. Fattakhov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru

Yaroslavl Branch

俄罗斯联邦, Yaroslavl

A. Popov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru

Yaroslavl Branch

俄罗斯联邦, Yaroslavl

L. Mazaletsky

Valiev Institute of Physics and Technology of the Russian Academy of Sciences; Demidov Yaroslavl State University

Email: ostrushin@mail.ru

Yaroslavl Branch

俄罗斯联邦, Yaroslavl; Yaroslavl

R. Gaidukasov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru
俄罗斯联邦, Moscow

A. Miakonkikh

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru
俄罗斯联邦, Moscow

参考

  1. Gansel J.K., Thiel M., Rill M.S. et al. // Science. 2009. V. 325. P. 1513.
  2. Gibbs J. G., Mark A.G., Eslami S. et al. // Appl. Phys. Lett. 2013. V. 103. Art. No. 213101.
  3. Lee S.H., Singh D.P., Sung J.H. et al. // Sci. Reports. 2016. V. 6. P. 19580.
  4. Kim J., Rana A.S., Kim Y. et al. // Sensors. 2021. V. 21. P. 4381.
  5. Трушин О.С., Попов А.А., Пестова А Н. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 650. Trushin O.S., Popov A.A., Pestova A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 542.
  6. Fujiwara H. Spectroscopic ellipsometry principles and applications. John Wiley & Sons Ltd. 2007.
  7. Мяконьких А.В., Смирнова Е.А., Клементе И.Э. // Микроэлектроника. 2021. Т. 50. № 4. С. 264. // Miakonkikh A.V., Smirnova E.A., Klemente I.E. // Russ. Microelectron. 2021. V. 50. Nо. 4. P. 230.
  8. Трушин О.С., Фаттахов И.C., Попов А.А. и др. // ФТТ. 2023. Т. 65. № 6. С. 996. // Trushin O.S., Fattakhov I.S., Popov A.A. et al. // Phys. Solid State 2023. V. 65. No. 6. P. 953.
  9. Faryad M., Lakhtakia A. // Adv. Opt. Photon. 2014. V. 6. P. 225.
  10. Schaferling M. Chiral nanophotonics. SSOS. V. 205. Springer International Publishing, 2017.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Microscopic images of nanostructured Co/Si films obtained at different substrate rotation speeds: 0.3 rpm – cross section (a) and top view (b), 0.6 rpm – cross section (c), 1.6 rpm – cross section (d).

下载 (40KB)
3. Fig. 2. Dependences of the degree of polarization of the reflected wave on the wavelength of the used radiation for two types of incident circularly polarized waves (right-handed-R and left-handed-L) for samples with different rotation speeds: 0.2 (a), 0.3 (b), 0.6 (c) and 1.6 rpm (d).

下载 (27KB)

版权所有 © Russian Academy of Sciences, 2024