Influence of the supramolecular and crystal structure of polylactide on the realization of the shape memory effect
- Autores: Zimina A.I.1, Kovaleva P.A.1, Kiselev D.A.1, Krupatin I.N.2, Senatov F.S.1
-
Afiliações:
- National University of Science and Technology “MISIS”
- Skolkovo Institute of Science and Technology, CCU “High-resolution Visualization”
- Edição: Volume 87, Nº 6 (2023)
- Páginas: 773-779
- Seção: Articles
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654371
- DOI: https://doi.org/10.31857/S036767652370134X
- EDN: https://elibrary.ru/VKHFFJ
- ID: 654371
Citar
Resumo
The influence of different methods of polylactide processing on its structural parameters were studied. The thermal properties and crystallinity of the material and the relationship between these properties and its supramolecular structure were studied, as well as the impact of these parameters on the realization of the shape memory effect of polylactide.
Sobre autores
A. Zimina
National University of Science and Technology “MISIS”
Email: zhukova.pa@yandex.ru
Russia, 119049, Moscow
P. Kovaleva
National University of Science and Technology “MISIS”
Autor responsável pela correspondência
Email: zhukova.pa@yandex.ru
Russia, 119049, Moscow
D. Kiselev
National University of Science and Technology “MISIS”
Email: zhukova.pa@yandex.ru
Russia, 119049, Moscow
I. Krupatin
Skolkovo Institute of Science and Technology, CCU “High-resolution Visualization”
Email: zhukova.pa@yandex.ru
Russia, 121205, Moscow
F. Senatov
National University of Science and Technology “MISIS”
Email: zhukova.pa@yandex.ru
Russia, 119049, Moscow
Bibliografia
- Liu C., Qin H., Mather P.T. // J. Mater. Chem. 2007. V. 17. No. 16. P. 1543.
- Meng Q., Hu J. // Composites. A. 2009. V. 40. No. 11. P. 1661.
- Huang W.M., Wang C.C., Ding Z. et al. // J. Polym. Res. 2012. V. 19. No. 9. Art. No. 9952.
- Behl M., Razzaq M.Y., Lendlein A. // Adv. Mater. 2010. V. 22. No. 31. P. 3388.
- Senatov F.S., Niaza K.V., Zadorozhnyy M.Yu. et al. // J. Mech. Behav. Biomed. Mater. 2016. V. 57. P. 139.
- Maksimkin A., Kaloshkin S., Zadorozhnyy M. et al. // J. Alloys Compounds. 2014. V. 586. Art. No. S214.
- Wei W., Liu J., Huang J. et al. // Eur. Polym. J. 2022. V. 175. Art. No. 111385.
- Zhang L., Jiang Y., Xiong Z. et al. // J. Mater. Chem. A. 2013. V. 1. No. 10. P. 3263.
- Yang W.G., Lu H., Huang W.M. et al. // Polymers. 2014. V. 6. No. 8. P. 2287.
- Wang L., Jian Y., Le X. et al. // Chem. Commun. 2018. V. 54. No. 10. P. 1229.
- Memarian F., Fereidoon A., Khonakdar H.A. et al. // Polym. Compos. 2019. V. 40. No. 2. P. 789.
- Zhao Q., Qi H.J., Xie T. // Prog. Polym. Sci. Pergamon. 2015. V. 49–50. P. 79.
- Tang Z., Zhang C., Liu X. et al. // J. Appl. Polym. Sci. 2012. V. 125. No. 2. P. 1108.
- Kang K.S., Lee S.I., Lee T.J. et al. // Korean J. Chem. Eng. 2008. V. 25. No. 3. P. 599.
- Nascimento L., Gamez-Perez J., Santana O.O. et al. // J. Polym. Environ. 2010. V. 18. No. 4. P. 654.
- Pan P., Kai W., Zhu B. et al. // Macromolecules. 2007. V. 40. No. 19. P. 6898.
- Orue A., Eceiza A., Arbelaiz A. // Ind. Crops Prod. 2018. V. 118. No. 8. P. 321.
- Lu S.X., Cebe P. // Polymer. 1996. V. 37. No. 21. P. 4857.
Arquivos suplementares
