A systematic study of SERS spectra of cationic Raman dyes adsorbed on citrate-stabilized silver nanoparticles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The adsorption (kinetics and signal stability) of cationic triarylmethane dyes and an acridine derivative with various counter-ions on citrate-stabilized hydroxylamine-reduced silver sols was studied using SERS spectroscopy. The influence of the method of nanoparticle synthesis, as well as the composition and ionic strength of the medium on the stability of nanoparticle–dye complexes was investigated.

Sobre autores

D. Gribanyov

Institute of Solid State Physics of the Russian Academy of Science

Autor responsável pela correspondência
Email: digrib@gmail.com
Russia, 142432, Chernogolovka

E. Rudakova

Institute of Solid State Physics of the Russian Academy of Science; Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics
and Medicinal Chemistry of the Russian Academy of Sciences

Email: digrib@gmail.com
Russia, 142432, Chernogolovka; Russia, 142432, Chernogolovka

E. Zavyalova

Lomonosov Moscow State University

Email: digrib@gmail.com
Russia, 119991, Moscow

Bibliografia

  1. Fleischmann M., Hendra P.J., McQuillan A.J. // Chem. Phys. Lett. 1974. V. 26. No. 2. P. 163.
  2. Otto A., Mrozek I., Grabhorn H., Akemann W. // J. Phys. Cond. Matter. 1992. V. 4. P. 1143.
  3. Kukushkin V.I., Van’kov A.B., Kukushkin I.V. // JETP Lett. 2013. V. 98. P. 64.
  4. Moskovits M. // Rev. Mod. Phys. 1985. V. 57. P. 783.
  5. Le Ru E.C., Etchegoin P.G. Principles of surface-enhanced Raman spectroscopy. New York: Elsevier, 2009.
  6. Cialla D., Polloka S., Steinbrücker C., Weber K., Popp J. // Nanophotonics. 2014. V. 3. No. 6. P. 383.
  7. Moisoiu V., Iancu S.D., Stefancu A. et al. // Coll. Surf. B. 2021. V. 208. Art. No. 112064.
  8. Ambartsumyan O., Gribanyov D., Kukushkin V. et al. // Int. J. Mol. Sci. 2020. V. 21. No. 9. P. 3373.
  9. Hildebrandt P., Stockburger M. // J. Phys. Chem. 1984. V. 88. P. 5935.
  10. Doering W.E., Nie S. // J. Phys. Chem. B. 2002. V. 106. P. 311.
  11. Leopold N., Lendl B. // J. Phys. Chem. B. 2003. V. 107. No. 24. P. 5723.
  12. Langxing Chen, Wenfeng Zhao, Yufen Jiao et al. // Spectrochim. Acta A. 2007. V. 68. No. 3. P. 484.
  13. Canamares M.V., Garcia-Ramos J.V., Sanchez-Cortes S. et al. // J. Colloid. Interface. Sci. 2008. V. 326. P. 103.
  14. Krutyakov Yu.A., Kudrinskiy A.A., Olenin A.Yu., Lisichkin G.V. // Russ. Chem. Rev. 2008. V. 77. P. 233.
  15. Futamata M., Yu Y., Yanatori T., Kokubun T.J. // Phys. Chem. C. 2010. V. 114. P. 7502.
  16. Futamata M., Yu Y., Yajima T. // J. Phys. Chem. C. 2011. V. 115. P. 5271.
  17. Mulvaney P. // Langmuir. 1996. V. 12. No. 3. P. 788.
  18. Banerjee V., Das K.P. // Coll. Surf. B. 2013. V. 111. P. 71.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (367KB)
3.

Baixar (189KB)
4.

Baixar (128KB)
5.

Baixar (57KB)

Declaração de direitos autorais © Д.А. Грибанев, Е.В. Рудакова, Е.Г. Завьялова, 2023