Condensates of magnetoexcitations in quantum Hall dielectrics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The formation and spreading in real space of dense ensembles of photoexcitations in integer and fractional quantum Hall dielectrics with filling factors ν = 2 and ν = 1/3 is visualized using a high-aperture high-resolution optical system. A comparative analysis of the correlation between the transport properties and the spatial coherence of these ensembles is carried out.

Texto integral

Acesso é fechado

Sobre autores

A. Gorbunov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: gorbunov@issp.ac.ru
Rússia, Chernogolovka

A. Larionov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: gorbunov@issp.ac.ru
Rússia, Chernogolovka

L. Kulik

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: gorbunov@issp.ac.ru
Rússia, Chernogolovka

V. Timofeev

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: gorbunov@issp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Deng H., Haug H., Yamamoto Y. // Rev. Mod. Phys. 2010. V. 82. P. 1489.
  2. Kulik L.V., Zhuravlev A.S., Dickmann S. et al. // Nature Commun. 2016. V. 7. Art. No. 13499.
  3. Avron J.E., Herbst I.W., Simon B. // Ann. Physics. 1978. V. 114. P. 431.
  4. Kulik L.V., Kuznetsov V.A., Zhuravlev A.S. et al. // Sci. Reports. 2018. V. 8. Art. No. 10948.
  5. Kulik L.V., Gorbunov A.V., Zhuravlev A.S. et al. // Appl. Phys. Lett. 2019. V. 114. Art. No. 062403.
  6. Kulik L.V., Zhuravlev A.S., Musina L.I. et al. // Nature Commun. 2021. V. 12. Art. No. 6477.
  7. Bartolomei H., Kumar M., Bisognina R. et al. // Science. 2020. V. 368. P. 173.
  8. Nakamura J., Liang S., Gardner G.C. et al. // Nature Physics. 2020. V. 16. Art. No. 931.
  9. Kulik L.V., Gorbunov A.V., Zhuravlev A.S. et al. // Sci. Reports. 2015. V. 5. Art. No. 10354.
  10. Kulik L.V., Kukushkin I.V., Dickmann S. et al. // Phys. Rev. B. 2005. V. 72. Art. No. 073304.
  11. Zhuravlev A.S., Kuznetsov V.A., Kulik L.V. et al. // Phys. Rev. Lett. 2016. V. 117. Art. No. 196802.
  12. Kuznetsov V.A., Kulik L.V., Velikanov M.D. et al. // Phys. Rev. B. 2018. V. 98. Art. No. 205303.
  13. Roumpos G., Lohse M., Nitsche W.H. et al. // PNAS. 2012. V. 109. P. 6467.
  14. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973.
  15. Kallin C., Halperin B.I. // Phys. Rev. B. 1985. V. 31. P. 3635.
  16. Dickmann S., Kulik L.V., Kuznetsov V.A. // Phys. Rev. B. 2019. V. 100. Art. No. 155304.
  17. Hohenberg P.C. // Phys. Rev. 1967. V. 158. P. 383.
  18. Березинский В.Л. // ЖЭТФ. 1972. Т. 61. № 3. С. 1144.
  19. Kosterlitz J.M., Thouless D.J. // J. Physics C. 1973. V. 6. P. 1181.
  20. Nitsche W.H., Kim N.Y., Roumpos G. et al. // Phys. Rev. A. 2016. V. 93. Art. No. 053622.
  21. Nitsche W.H., Kim N.Y., Roumpos G. et al. // Phys. Rev. B. 2014. V. 90. Art. No. 205430.
  22. Knüppel P., Ravets S., Kroner M. et al. // Nature. 2019. V. 572. P. 91.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Images of an integer quantum Hall dielectric sample (ν = 2) in FL light (a) and in FRO light at wavelengths λmax (b) and λ2 ≈ λmax - 0.2 nm (c). Ppump = 10 μW. T ≈ 0.55 K. The frame side size is ≈310 μm. FL and FRO spectra recorded under close experimental conditions are shown at the bottom. The diagram on the bottom right illustrates the wave functions and energy levels for TCMEs with generalised impulses q ≈ 0 and q ≈ 1 / lB. The red lines show the corresponding FRO optical transitions

Baixar (228KB)
3. Fig. 2. Spatial distribution profile of the FRO signal from the photoexcitation region of a fractional quantum Hall insulator (n = 1/3. The dots are the results of measurements at the indicated pumping/probing powers. The grey curve is the Gaussian distribution profile with a radius of 5 μm. T ≈ 0.55 K

Baixar (201KB)
4. Fig. 3. Coherence of ensembles of magnetic excitations in integer (a) and fractional (b) quantum Hall insulators. The green line is the profile of the interference fringes in FRO light: |g(1)(δ)cosΦ(δ)|. (a) ν = 2, Ppump = Pprobe = 1 µW. The red line is the weighted sum of the hardware function and its convolution with the exponent at ξ = 10 μm. The blue line is the function (0.18/|δ|)0.6. (b) ν = 1/3, Ppump / probe = 80 µW. The red curve is the hardware function that best describes the centre peak. T ≈ 0.55 K

Baixar (221KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024