Determination of the rigidity of the geomagnetic cutoff and simulation of the motion of particles in the Earth’s magnetosphere
- Autores: Kruchinin P.A.1, Malakhov V.V.1, Golubkov V.S.1, Mayorov A.G.1
-
Afiliações:
- MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University
- Edição: Volume 88, Nº 2 (2024)
- Páginas: 331-334
- Seção: Physics of Cosmic Rays
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654774
- DOI: https://doi.org/10.31857/S0367676524020309
- EDN: https://elibrary.ru/RPSEBE
- ID: 654774
Citar
Resumo
A method for determination of the geomagnetic cutoff rigidity is presented. The method is based on the tracing of charged particles in the Earth’s magnetic field using Buneman-Boris’ particle-in-cell method. The results of the verification of the method are presented: in particular, a comparison with theoretical calculations in an ideal dipolar field and with previous calculations made under the real field condition. The developed method has shown a high reliability proven by the replication of the known effects. In the dipolar approximation, it has shown high accuracy in comparison with the theoretical calculations. Typical pattern of geomagnetic cutoff penumbra is also reproduced.
Texto integral

Sobre autores
P. Kruchinin
MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University
Autor responsável pela correspondência
Email: kruchinin_01@inbox.ru
Rússia, Moscow
V. Malakhov
MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University
Email: kruchinin_01@inbox.ru
Rússia, Moscow
V. Golubkov
MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University
Email: kruchinin_01@inbox.ru
Rússia, Moscow
A. Mayorov
MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University
Email: kruchinin_01@inbox.ru
Rússia, Moscow
Bibliografia
- Данилова О.А., Демина И.М., Птицына Н.Г., Тясто М.И. // Геомагн. и аэроном. 2019. Т. 59. № 2. С. 160; Danilova O.A., Demina I.M., Ptitsyna N.G., Tyasto M.I. // Geomagn. Aeronomy. 2019. V. 59. No. 2. P. 147.
- Малахов В.В., Майоров А.Г. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 515; Malakhov V.V., Mayorov A.G. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 386.
- Голуб О.А., Майоров А.Г. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 475; Golub O.A., Mayorov A.G. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 350.
- Smart D.F., Shea M.A. // Adv. Space Res. J. 2005. V. 36. P. 2012.
- Smart D.F., Shea M.A. // Adv. Space Res. J. 1994. V. 14. No. 10. P. 787.
- Smart D.F., Shea M.A. // Adv. Space Res. J. 2009. V. 44. P. 1107.
- Голубков В.С., Майоров А.Г. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 512; Golubkov V.S., Mayorov A.G. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 383.
- Boris J.P. // Technical Report MATT-152. Princeton: Princeton Univ., 1970.
- Boris J.P. // Proc. Conf. Numerical Simulation of Plasmas (Washington, 1971). P. 3.
- Alken P., Thébault E. et al. // Earth Planets. Space J. 2021. V. 43. P. 49.
Arquivos suplementares
