Determination of the rigidity of the geomagnetic cutoff and simulation of the motion of particles in the Earth’s magnetosphere

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for determination of the geomagnetic cutoff rigidity is presented. The method is based on the tracing of charged particles in the Earth’s magnetic field using Buneman-Boris’ particle-in-cell method. The results of the verification of the method are presented: in particular, a comparison with theoretical calculations in an ideal dipolar field and with previous calculations made under the real field condition. The developed method has shown a high reliability proven by the replication of the known effects. In the dipolar approximation, it has shown high accuracy in comparison with the theoretical calculations. Typical pattern of geomagnetic cutoff penumbra is also reproduced.

Texto integral

Acesso é fechado

Sobre autores

P. Kruchinin

MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University

Autor responsável pela correspondência
Email: kruchinin_01@inbox.ru
Rússia, Moscow

V. Malakhov

MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University

Email: kruchinin_01@inbox.ru
Rússia, Moscow

V. Golubkov

MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University

Email: kruchinin_01@inbox.ru
Rússia, Moscow

A. Mayorov

MEPhI (Moscow Engineering Physics Institute) National Research Nuclear University

Email: kruchinin_01@inbox.ru
Rússia, Moscow

Bibliografia

  1. Данилова О.А., Демина И.М., Птицына Н.Г., Тясто М.И. // Геомагн. и аэроном. 2019. Т. 59. № 2. С. 160; Danilova O.A., Demina I.M., Ptitsyna N.G., Tyasto M.I. // Geomagn. Aeronomy. 2019. V. 59. No. 2. P. 147.
  2. Малахов В.В., Майоров А.Г. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 515; Malakhov V.V., Mayorov A.G. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 386.
  3. Голуб О.А., Майоров А.Г. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 475; Golub O.A., Mayorov A.G. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 350.
  4. Smart D.F., Shea M.A. // Adv. Space Res. J. 2005. V. 36. P. 2012.
  5. Smart D.F., Shea M.A. // Adv. Space Res. J. 1994. V. 14. No. 10. P. 787.
  6. Smart D.F., Shea M.A. // Adv. Space Res. J. 2009. V. 44. P. 1107.
  7. Голубков В.С., Майоров А.Г. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 512; Golubkov V.S., Mayorov A.G. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 383.
  8. Boris J.P. // Technical Report MATT-152. Princeton: Princeton Univ., 1970.
  9. Boris J.P. // Proc. Conf. Numerical Simulation of Plasmas (Washington, 1971). P. 3.
  10. Alken P., Thébault E. et al. // Earth Planets. Space J. 2021. V. 43. P. 49.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Illustration of Smart and Shea penumbra of the geomagnetic clipping stiffness (a), illustration of the geomagnetic clipping penumbra in the IGRF-13 model (b), image of the azimuthal angle traversal direction showing the column locations in Figs. 1a and 1b (c). The counting starts from the azimuth angle ξ = 277°. From this value there are arrows on the circle showing further values of the azimuth angles and the arrangement of the columns on the abscissa axis and the corresponding arrangement of the columns on the abscissa axis. This arrangement corresponds to the west-east direction

Baixar (360KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024