Schrödinger equation and quantum shock waves when describing collisions of atomic nuclei

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Equations of quantum hydrodynamics were obtained from the Schrödinger equation considering dissipation, which in the semiclassical limit are reduced to the traditional equations of hydrodynamics of an ideal fluid. An analytical solution to the hydrodynamic equations is found in the quantum shock wave approximation in one-dimensional and two-dimensional cases. The dissipative function can be found in the nonequilibrium approach. A comparison is made with experimental data to describe the emission of protons in collisions of medium-sized atomic nuclei of intermediate energies.

Sobre autores

A. D’yachenko

B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”; Saint Petersburg State Transport University

Autor responsável pela correspondência
Email: dyachenko_a@mail.ru
Rússia, Gatchina, 188300; St. Petersburg, 190031

I. Mitropolsky

B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”

Email: dyachenko_a@mail.ru
Rússia, Gatchina, 188300

Bibliografia

  1. Madelung Е. // Z. Physik. 1926. V. 40. P. 332.
  2. Дьяченко А.Т. // Ядерн. физика. 2023. Т. 86 С. 428; D’yachenko A.T. // Phys. Atom. Nucl. 2023. V. 86. P. 289.
  3. D’yachenko A.T., Gridnev K.A., Greiner W. // J. Physics G. 2013. V. 40. No. 3. Art. No. 085101.
  4. Дьяченко А.Т., Митропольский И.А. // Ядерн. физика. 2020. Т. 83. С. 317; D’yachenko A.T., Mitropolsky I.A. // Phys. Atom. Nucl. 2020. V. 83. P. 558.
  5. Дьяченко А.Т., Митропольский И.А. // Изв. РАН. Сер. физ. 2020. Т. 84. С. 508; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 391.
  6. Дьяченко А.Т., Митропольский И.А. // Изв. РАН. Сер. физ. 2021. Т. 85. С. 716; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. P. 554.
  7. D’yachenko A.T., Mitropolsky I.A. // EPJ Web Conf. 2019. V. 204. No. 3. Art. No. 03018.
  8. D’yachenko A.T., Mitropolsky I.A. // Phys. Atom. Nucl. 2019. V. 82. P. 1641
  9. Дьяченко А.Т., Митропольский И.А. // Ядерн. физика. 2023. Т. 86 С. 285; D’yachenko A.T., Mitropolsky I.A. // Phys. Atom. Nucl. 2022. V. 85. P. 1053.
  10. Дьяченко А.Т., Митропольский И.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 8. C. 1155; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 8. P. 962.
  11. Дьяченко А.Т., Митропольский И.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 8. C. 1155; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 8. P. 1169.
  12. Nemeth J., Barranco M., Ngö C., Tomasi Е. // Z. Physik A. 1986. V. 323. P. 419.
  13. Nagamiya S., Lemaire M.-C., Moeller E. et al. // Phys. Rev. C. 1981. V. 24. P. 971.
  14. Мишустин И.Н., Русских В.Н., Сатаров Л.М. // Ядерн. физика. 1991. Т. 54. С. 429; Mishustin I.N., Russkikh V.N., Satarov L.M. // Sov. J. Nucl. Phys. 1991. V. 54. P. 260.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024