Charge-sign dependence of cosmic-ray modulation by the PAMELA experiment
- 作者: Mukhin P.1, Mikhailov V.V.1, Mikhailova A.V.1
-
隶属关系:
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- 期: 卷 87, 编号 7 (2023)
- 页面: 1032-1034
- 栏目: Articles
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654362
- DOI: https://doi.org/10.31857/S0367676523701831
- EDN: https://elibrary.ru/OJMHUF
- ID: 654362
如何引用文章
详细
To study the solar modulation of cosmic-ray fluxes below 1 GeV, machine learning methods allowed obtaining the flux ratios of positrons and electrons with energies from 100 to 500 MeV, and the fluxes of electrons and protons with 1–1.7 GV rigidities from the PAMELA experiment for 2006–2016. The observed features of the data obtained and its comparison with the AMS-02 experimental data enable researching the charge-sign dependence of the modulation around the solar minimum in 2009 and the maximum in 2015.
作者简介
P. Mukhin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
编辑信件的主要联系方式.
Email: pasha_myxin@mail.ru
Russia, 115409, Moscow
V. Mikhailov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: pasha_myxin@mail.ru
Russia, 115409, Moscow
A. Mikhailova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: pasha_myxin@mail.ru
Russia, 115409, Moscow
参考
- Михайлов В.В., Воронов С.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1344; Mikhailov V.V., Voronov S.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 1036.
- Михайлов В.В., Адриани О., Базилевская Г.А. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 2. С. 173; Mikhailov V.V., Adriani O., Bazilevskaya G.A. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 2. P. 203.
- Михайлов В.В., Адриани О., Базилевская Г.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 8. С. 1073; Mikhailov V.V., Adriani O., Bazilevskaya G.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 974.
- Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. // Phys. Rev. Lett. 2011. V. 106. Art. No. 201101.
- Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. // Phys. Rev. Lett. 2013. V. 111. Art. No. 081102.
- Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. // Phys. Rev. Lett. 2016. V. 116. Art. No. 241105.
- Mechbal S., Mangeard P.-S., Clem J.M. et al. // Astrophys. J. 2020. V. 903. No. 1. Art. No. 21.
- Aguilar M., Ali Cavasonza L., Ambrosi G. et al. // Phys. Rev. Lett. 2018. V. 121. Art. No. 051101.
- Aguilar M., Ali Cavasonza L., Ambrosi G. et al. // Phys. Rev. Lett. 2018. V. 121. Art. No. 051102.
- Picozza P., Galper A.M., Castellini G. et al. // Astropart. Phys. 2007. V. 27. No. 4. P. 296.
- Shea M.A., Smart D.F., Gentile L.C. // Phys. Earth Planet. Interact. 1987. V. 48. No. 3–4. P. 200.
- https://root.cern.ch/doc/master/classTMVA_1_1Method BDT.html.
- Modzelewska R., Bazilevskaya G.A., Boezio M. et al. // Astrophys. J. 2020. V. 904. No. 1. Art. No. 3.
- Garcia-Munoz M., Meyer P., Pyle K.R., Simpson J. // Proc. 20th ICRC. V. 3. (Moscow, 1987). P. 303.
- Marcelli N., Boezio M., Lenni A. et al. // Astrophys. J. Lett. 2022. V. 925. No. 2. Art. No. L24.
- Bishoff D., Potgieter M.S., Aslam O.P.M. // Astrophys. J. 2019. V. 878. No. 1. Art. No. 59.
