Carbon nanoparticle identification using transmission electron microscopy methods in biological samples

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Carbon nanoparticles are a common type of nanoparticles, the identification of which in biological samples is associated with great difficulties. It is demonstrated that the use of standard transmission electron microscopy in combination with the electron diffraction method is a reliable and relevant tool for the carbon nanoparticles identification in biological samples.

作者简介

A. Masyutin

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University; Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

编辑信件的主要联系方式.
Email: squiggoth@yandex.ru
Russia, 119234, Moscow; Russia, 107564, Moscow

E. Tarasova

Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

Email: squiggoth@yandex.ru
Russia, 107564, Moscow

G. Onishchenko

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University

Email: squiggoth@yandex.ru
Russia, 119234, Moscow

M. Erokhina

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University; Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

Email: squiggoth@yandex.ru
Russia, 119234, Moscow; Russia, 107564, Moscow

参考

  1. Simakov S.K. // Geosci. Front. 2018. V. 9. No. 6. P. 1849.
  2. Notarianni M., Liu J., Vernon K. et al. // Beilstein J. Nanotechnol. 2016. V. 7. P. 149.
  3. Bandlapalli C., SreeGaddam H.U., Chintmaneni P.K. et al. // Saudi J. Med. Pharm. Sci. 2021. V. 7. No. 8. P. 395.
  4. Suzuki S., Mori S. // J. Air Waste Manag. Assoc. 2017. V. 67. No. 8. P. 873.
  5. Losacco C., Perillo A. // Environ. Sci. Pollut. Res. 2018. V. 25. Art. No. 33901.
  6. Strojny B., Kurantowicz N., Sawosz E. et al. // PLoS ONE. 2015. V. 10. No. 12. Art. No. e0144821.
  7. Glaeser R.M., Gareth T. // Biophys. J. 1969. V. 9. No. 9. P. 1073.
  8. Yuan X., Zhang X., Sun L. et al. // Part. Fibre Toxicol. 2019. V. 1. No. 16. P. 18.
  9. Malatesta M. // Int. J. Mol. Sci. 2021. V. 22. P. 12789.
  10. Mühlfeld C., Rothen-Rutishauser B., Vanhecke D. et al. // Part. Fibre Toxicol. 2007. V. 4. Art. No. 11.
  11. Kurynina A.V., Erokhina M.V., Makarevich O.A. et al. // Biochem. 2018. V. 83. No. 3. P. 200.
  12. Кирпичников М.П. Порядок выявления и идентификации агрегатов многостенных углеродных нанотрубок в срезах тканей животных и растений методами аналитической электронной микроскопии: Методические рекомендации МР 1.2.0045-11. М.: ФЦГиЭ Роспотребнадзора, 2012. с. 39.
  13. Reynolds E.S. // J. Cell Biol. 1963. V. 1. No. 17. P. 208.
  14. Sasaki H., Arai H., Kikuchi E. et al. // Sci. Reports. 2022. V. 12. No. 1. P. 7756.
  15. Yildirimer L., Thanh N.T.K., Loizidou M. et al. // Nano Today. 2011. V. 6. No. 6. P. 585.
  16. Joshi A., Kaur S., Singh P. et al. // Appl. Nanosci. 2018. V. 6. No. 8. P. 1399.
  17. Nagaraju K., Reddy R., Reddy N. // J. Appl. Biomater. Funct. Mater. 2015. V. 4. No. 13. Art. No. e301-12.
  18. Coméra C., Cartier C., Gaultier E. et al. // Part. Fibre Toxicol. 2020. V. 1. No. 17. P. 26.
  19. Shebanova A. S., Bogdanov A.G., Ismagulova T.T. et al. // Biophysics. 2014. V. 2. No. 59. P. 284.
  20. Gass M., Porter A., Bendall J. et al. // Ultramicroscopy. 2009. No. 110. P. 946.
  21. Snyder-Talkington B.N., Schwegler-Berry D., Castranova V. et al. // Part. Fibre Toxicol. 2013. V. 10. P. 35.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (2MB)
3.

下载 (3MB)
4.

下载 (2MB)
5.

下载 (1MB)

版权所有 © А.Г. Масютин, Е.К. Тарасова, Г.Е. Онищенко, М.В. Ерохина, 2023