Hausdorf dimension of typical very low frequency chorus emissions and verification of their excitation mechanism

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A quantitative study of the degree of complexity of electromagnetic VLF chorus emissions in the region of their excitation near the local minimum of the magnetic field outside the plasmasphere was carried out using modern mathematical tools. From the vast observational data collected during the Van Allen Probe mission, typical examples of chorus have been selected for which high-resolution digitized data are available. The original program was used to calculate the Hausdorff dimension of long numerical sequences. In all cases, the dimension turned out to be non-integer, which indicates the complex dynamics of the system. During the calculations, jumps in dimension were noted, including its decrease by about a factor of two for a fragment of a burst of chorus. The obtained results are important for confirming the mechanism of excitation of chorus by amplifying short noise pulses and for substantiating the possibility of automatic identification of electromagnetic radiation of different types.

全文:

受限制的访问

作者简介

P. Bespalov

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Higher School of Economics National Research University

编辑信件的主要联系方式.
Email: PBespalov@mail.ru
俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod

O. Savina

Higher School of Economics National Research University

Email: PBespalov@mail.ru
俄罗斯联邦, Nizhny Novgorod

G. Neshchetkin

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Higher School of Economics National Research University

Email: PBespalov@mail.ru
俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod

参考

  1. Bell T.F., Inan U.S., Hague N., Pickett J.S. // Geophys. Res. Lett. 2009. V. 36. Art. No. L11101.
  2. Kletzing C.A., Kurth W.S., Acuna M. et al. // Space Sci. Rev. 2013. V. 179. P. 127.
  3. https://emfisis.physics.uiowa.edu/Flight.
  4. Eckman J.P., Ruelle D. // Rev. Mod. Phys. 1985. V. 57. P. 617.
  5. Takens F. // Lect. Notes Math. 1981. V. 898. P. 366.
  6. Grassberger P., Procaccia I. // Phys. Rev. Lett. 1983. V. 50. P. 346.
  7. Henon M. // Commun. Math. Phys. 1976. V. 50. P. 69.
  8. Шустер Г. Детерминированный хаос. Введение. М.: Мир, 1988. 248 с.
  9. Малинецкий Г.Г., Потапов А.В. Современные проблемы нелинейной динамики. М.: Эдиториал УРСС, 2000. 336 с.
  10. Moon F.C. Chaotic vibrations: an introduction for applied scientists and engineers. New York: Wiley-Interscience, 1987. 309 p.
  11. Trakhtengerts V.Y. // J. Geophys. Res. 1995. V. 100. P. 17205.
  12. Omura Y., Katoh Y., Summers D. // J. Geophys. Res. A. 2008. V. 113. Art. No. A04223.
  13. Bespalov P., Savina O. // Ann. Geophys. 2018. V. 36. P. 1201.
  14. Беспалов П.А., Савина О.Н., Жаравина П.Д. // Косм. иссл. 2022. Т. 60. С. 17.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Analysis of the chorus burst recorded by the Van Allen Probe spacecraft on 2018-11-01 at 10:37:43 UT: the middle panel on the left shows the low-resolution dynamic spectrum, where the white line shows the value of half of the local electron gyrofrequency and the arrow shows the time of registration of the chorus burst; the middle panel on the right shows the dynamic spectrum of the choruses from the high-resolution data; the top panel on the left shows the results of the calculation of |log(C(m, r))| from |log(r)|; the top right panel shows the line segment, whose tangent of the slope angle is used to determine the dimensionality value; the bottom two panels show the results of the dimensionality calculation for Fr

下载 (574KB)
3. Fig. 2. Analysis of the chorus burst recorded by the Van Allen Probe spacecraft 2014-02-20 at 22:08:42 UT, presented similarly to Fig. 1

下载 (645KB)

版权所有 © Russian Academy of Sciences, 2024