Crystal structure and EPR spectra of Mn2.25Co0.75BO5

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of studies of the structure of Mn2.25Co0.75BO5 using powder neutron diffraction are presented. To perform these studies, the crystals of ludwigite Mn2.25Co0.75BO5 were grown by the solution-melt method using a solvent based on Bi2Mo3O12 with a dilution of Na2CO3 carbonate. Boric acid H311BO3 was used as a boron-containing component. Measurements of powder neutron diffraction were carried out at a temperature of 100 K on a powder prepared by grinding grown single crystals. The spatial group and lattice parameters were determined by the Rietveld method using an experimentally obtained diffractogram. It is shown that the grown crystals Mn2.25Co0.75BO5 have the spatial group Pbam. The cobalt and manganese ion crystallographic positions have been determined from the powder neutron diffraction pattern analysis. The narrow throat mode was observed in the temperature dependence of the EPR spectra.

全文:

受限制的访问

作者简介

R. Eremina

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

E. Moshkina

Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: REremina@yandex.ru

Kirensky Institute of Physics

俄罗斯联邦, Krasnoyarsk

I. Yatsyk

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

V. Shustov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

参考

  1. Bordet P., Suard E. // Phys. Rev. B. 2009. V. 79. Art. No. 144408.
  2. Bluhm K., Müller-Buschbaum H. // Z. Anorg. Allg. Chem. 1989. Bd. 579. P. 111.
  3. Li H. K., Wang L., Cai G.M. et al. // J. Alloys Compounds. 2013. V. 575. P. 104.
  4. Norrestam R., Dahl S., Bovin J.-O. // Zeitschriftfürristallographie. 1989. Bd. 187. P. 201.
  5. Freitas D.C., Continentino M.A., Guimarães R.B. et al. // Phys. Rev. B. 2008. V. 77. P. 184422.
  6. Attfield J.P., Clarke J.F., Perkins D.A. // J. Physics B. 1992. V. 180—181. P. 581.
  7. Neuendorf H., Gunβer W. // JMMM 1997. V. 173. No. 1-2. P. 117.
  8. Bezmaternykh L. N., Kolesnikova E.M., Eremin E.V. et al. // JMMM. 2014. V. 364. P. 55.
  9. Bezmaternykh L., Moshkina E., Eremin E. et al. // Solid State Phenom. 2015. V. 233—234. P. 133.
  10. Freitas D.C., Continentino M.A., Guimarães R B. et al. // Phys. Rev. B. 2009. V. 79. No. 13. Art. No. 134437.
  11. Freitas D.C., Guimarães R.B., Sanchez D.R. et al. // Phys. Rev. B. 2010. V. 81. Art. No. 024432.
  12. Medrano C.P.C., Freitas D.C., Sanchez D.R. et al. // Phys. Rev. B. 2015. V. 91. Art. No. 054402.
  13. Иванова Н.В., Казак Н.В., Князев Ю.В. и др. // ЖЭТФ. 2011. Т. 140. № 6. С. 1160; Ivanova N.B., Kazak N.V., Knyazev Y.V. et al. // JETP. 2011. V. 113. No. 6. P. 1015.
  14. Ivanova N.B., Platunov M.S., Knyazev Y.V. et al. // Phys. Solid State. 2012. V 54. No. 11. P. 2212.
  15. Еремина Р.М., Мошкина Е.М., Гаврилова Т.П. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 999; Eremina R.M., Moshkina E.M., Gavrilova T.P. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 912.
  16. Замкова Н.Г., Жандун В.С., Овчинников С.Г. // Письма в ЖЭТФ. 2023. Т. 118. № 5. С. 323; Zamkova N.G., Zhanduna V.S., Ovchinnikov S.G. // JETP Lett. 2023. V. 118. No. 5. P. 321.
  17. Казак Н.В., Бельская Н.А., Мошкина Е.М. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 2. C. 89; Kazak N.V., Belskaya N.A., Moshkina E.M. et al. // JETP Lett. 2021. V. 114. No. 2. P. 92.
  18. Stenger C. G., Verschoor G.C., Ijdo D.J. // Mater. Res. Bull. 1973. V. 8. No. 11. P. 1285.
  19. Bluhm K., Müller-Buschbaum H. // J. Less Comm. Metals. 1989. V. 147. No. 1. P. 133.
  20. Freitas D.C., Medrano C.P.C., Sanchez D.R. et al. // Phys. Rev. B. 2016. V. 94. Art. No. 174409.
  21. Vavilova E., Vasilchikova T., Vasiliev A. et al. // Phys. Rev. B. 2023. V.107(5). Art. No. 054411.
  22. Moshkina E., Bovina A. et al. // Cryst. Eng. Comm. 2021. V. 23. P. 5624.
  23. Lutterotti L. // Nucl. Instrum. Meth. Phys. Res. B. 2010. V. 268. P. 334.
  24. Popov D.V., Gavrilova T.P., Gilmutdinov I.F. et al. // J. Phys. Chem. Solids. 2021. V. 148. Art. No. 109695.
  25. Kochelaev B.I., Kan L., Elschner B. et al. // Phys. Rev. B. 1994. V. 49. No. 18. P. 13106.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of ludwigite.

下载 (208KB)
3. Fig. 2. The obtained single crystal of ludwigite Mn2.25Co0.7511BO5

下载 (37KB)
4. Fig. 3. Temperature dependence of the EPR spectra of Mn2.25Co0.75BO5 powder in the X-band (9.4 GHz), the spectra are presented between 100 and 260 K with a step of 10 K. Experimental spectra are shown by open symbols, solid lines are approximations according to formula (1).

下载 (774KB)
5. Fig. 4. Neutron diffraction patterns of Mn2.25Co0.7511BO5 at a temperature of 100 K.

下载 (284KB)
6. Fig. 5. Temperature dependences of the resonant magnetic field value (a); width (b) and inverse integral intensity (c) of the EPR line in Mn2.25Co0.75BO5.

下载 (240KB)

版权所有 © Russian Academy of Sciences, 2024