Crystal structure and EPR spectra of Mn2.25Co0.75BO5

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of studies of the structure of Mn2.25Co0.75BO5 using powder neutron diffraction are presented. To perform these studies, the crystals of ludwigite Mn2.25Co0.75BO5 were grown by the solution-melt method using a solvent based on Bi2Mo3O12 with a dilution of Na2CO3 carbonate. Boric acid H311BO3 was used as a boron-containing component. Measurements of powder neutron diffraction were carried out at a temperature of 100 K on a powder prepared by grinding grown single crystals. The spatial group and lattice parameters were determined by the Rietveld method using an experimentally obtained diffractogram. It is shown that the grown crystals Mn2.25Co0.75BO5 have the spatial group Pbam. The cobalt and manganese ion crystallographic positions have been determined from the powder neutron diffraction pattern analysis. The narrow throat mode was observed in the temperature dependence of the EPR spectra.

Full Text

Restricted Access

About the authors

R. M. Eremina

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Author for correspondence.
Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kazan

E. М. Moshkina

Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: REremina@yandex.ru

Kirensky Institute of Physics

Russian Federation, Krasnoyarsk

I. V. Yatsyk

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kazan

V. А. Shustov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kazan

References

  1. Bordet P., Suard E. // Phys. Rev. B. 2009. V. 79. Art. No. 144408.
  2. Bluhm K., Müller-Buschbaum H. // Z. Anorg. Allg. Chem. 1989. Bd. 579. P. 111.
  3. Li H. K., Wang L., Cai G.M. et al. // J. Alloys Compounds. 2013. V. 575. P. 104.
  4. Norrestam R., Dahl S., Bovin J.-O. // Zeitschriftfürristallographie. 1989. Bd. 187. P. 201.
  5. Freitas D.C., Continentino M.A., Guimarães R.B. et al. // Phys. Rev. B. 2008. V. 77. P. 184422.
  6. Attfield J.P., Clarke J.F., Perkins D.A. // J. Physics B. 1992. V. 180—181. P. 581.
  7. Neuendorf H., Gunβer W. // JMMM 1997. V. 173. No. 1-2. P. 117.
  8. Bezmaternykh L. N., Kolesnikova E.M., Eremin E.V. et al. // JMMM. 2014. V. 364. P. 55.
  9. Bezmaternykh L., Moshkina E., Eremin E. et al. // Solid State Phenom. 2015. V. 233—234. P. 133.
  10. Freitas D.C., Continentino M.A., Guimarães R B. et al. // Phys. Rev. B. 2009. V. 79. No. 13. Art. No. 134437.
  11. Freitas D.C., Guimarães R.B., Sanchez D.R. et al. // Phys. Rev. B. 2010. V. 81. Art. No. 024432.
  12. Medrano C.P.C., Freitas D.C., Sanchez D.R. et al. // Phys. Rev. B. 2015. V. 91. Art. No. 054402.
  13. Иванова Н.В., Казак Н.В., Князев Ю.В. и др. // ЖЭТФ. 2011. Т. 140. № 6. С. 1160; Ivanova N.B., Kazak N.V., Knyazev Y.V. et al. // JETP. 2011. V. 113. No. 6. P. 1015.
  14. Ivanova N.B., Platunov M.S., Knyazev Y.V. et al. // Phys. Solid State. 2012. V 54. No. 11. P. 2212.
  15. Еремина Р.М., Мошкина Е.М., Гаврилова Т.П. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 999; Eremina R.M., Moshkina E.M., Gavrilova T.P. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 912.
  16. Замкова Н.Г., Жандун В.С., Овчинников С.Г. // Письма в ЖЭТФ. 2023. Т. 118. № 5. С. 323; Zamkova N.G., Zhanduna V.S., Ovchinnikov S.G. // JETP Lett. 2023. V. 118. No. 5. P. 321.
  17. Казак Н.В., Бельская Н.А., Мошкина Е.М. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 2. C. 89; Kazak N.V., Belskaya N.A., Moshkina E.M. et al. // JETP Lett. 2021. V. 114. No. 2. P. 92.
  18. Stenger C. G., Verschoor G.C., Ijdo D.J. // Mater. Res. Bull. 1973. V. 8. No. 11. P. 1285.
  19. Bluhm K., Müller-Buschbaum H. // J. Less Comm. Metals. 1989. V. 147. No. 1. P. 133.
  20. Freitas D.C., Medrano C.P.C., Sanchez D.R. et al. // Phys. Rev. B. 2016. V. 94. Art. No. 174409.
  21. Vavilova E., Vasilchikova T., Vasiliev A. et al. // Phys. Rev. B. 2023. V.107(5). Art. No. 054411.
  22. Moshkina E., Bovina A. et al. // Cryst. Eng. Comm. 2021. V. 23. P. 5624.
  23. Lutterotti L. // Nucl. Instrum. Meth. Phys. Res. B. 2010. V. 268. P. 334.
  24. Popov D.V., Gavrilova T.P., Gilmutdinov I.F. et al. // J. Phys. Chem. Solids. 2021. V. 148. Art. No. 109695.
  25. Kochelaev B.I., Kan L., Elschner B. et al. // Phys. Rev. B. 1994. V. 49. No. 18. P. 13106.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of ludwigite.

Download (208KB)
3. Fig. 2. The obtained single crystal of ludwigite Mn2.25Co0.7511BO5

Download (37KB)
4. Fig. 3. Temperature dependence of the EPR spectra of Mn2.25Co0.75BO5 powder in the X-band (9.4 GHz), the spectra are presented between 100 and 260 K with a step of 10 K. Experimental spectra are shown by open symbols, solid lines are approximations according to formula (1).

Download (774KB)
5. Fig. 4. Neutron diffraction patterns of Mn2.25Co0.7511BO5 at a temperature of 100 K.

Download (284KB)
6. Fig. 5. Temperature dependences of the resonant magnetic field value (a); width (b) and inverse integral intensity (c) of the EPR line in Mn2.25Co0.75BO5.

Download (240KB)

Copyright (c) 2024 Russian Academy of Sciences