Study of time parameters of interplanetary disturbances with magnetic clouds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The registration times of extreme values of the main parameters of the interplanetary medium, cosmic ray variations and geomagnetic activity during the passage of coronal mass ejections with a magnetic cloud past the Earth have been studied. The following parts of interplanetary disturbances were considered: (I) from the interplanetary disturbance onset to the magnetic cloud onset, (II) inside the magnetic cloud, (III) from the magnetic cloud end to the interplanetary disturbance end, which was often the onset of the next interplanetary disturbance. It is shown in which part of the interplanetary disturbances the extremes of solar wind speed, interplanetary magnetic field, density and anisotropy of cosmic rays, as well as geomagnetic activity indices are most often recorded.

Sobre autores

M. Abunina

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: abunina@izmiran.ru
Moscow, Russia

A. Belov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Moscow, Russia

N. Shlyk

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Moscow, Russia

S. Belov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Moscow, Russia

A. Abunin

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Moscow, Russia

V. Oleneva

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Moscow, Russia

V. Yanke

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Burlaga L., Sittler E., Mariani F., Schwenn R. // J. Geophys. Res. 1981. V. 86. P. 6673.
  2. Burlaga L.F., Behannon K.W. // Solar Phys. 1982. V. 81. P. 181.
  3. Klein L., Burlaga L. // J. Geophys. Res. 1982. V. 87. No. A2. P. 613.
  4. Gosling J.T., Bame S.J., McComas D.J., Phillips J.L. // Geophys. Res. Lett. 1990. V. 17. No. 7. P. 901.
  5. Badruddin B., Yadav R.S., Yadav N.R. // Solar Phys. 1986. V. 105. No. 2. P. 413.
  6. Fadaaq M., Badruddin B. // Astrophys. 2021. V. 64. No. 2. P. 210.
  7. Fadaaq M., Badruddin B. // Astrophys. Space Sci. 2020. V. 366. Art. No. 10.
  8. Melkumyan A.A., Belov A.V., Abunina M.A. et al. // Month. Notes Royal Astron. Soc. 2022. V. 515. No. 3. P. 4430.
  9. Melkumyan A.A., Belov A.V., Shlyk N.S. et al. // Month. Notes Royal Astron. Soc. 2023. V. 521. No. 3. P. 4544.
  10. Мелкумян А.А., Белов А.В., Абунина М.А. и др. // Геомагн. и аэрономия. 2022. Т. 62. № 3. С. 283
  11. Melkumyan A.A., Belov A.V., Abunina M.A. et al. // Geomagn. Aeron. 2022. V. 62. No. 3. P. 159.
  12. Абунина М.А., Белов А.В., Шлык Н.С. и др. // Геомагн. и аэрономия. 2024. Т. 64.№1. С. 29
  13. Abunina M.A., Belov A.V., Shlyk N.S. // Geomagn. Aeron. 2024. V. 64. No. 1. P. 24.
  14. Matzka J., Stolle C., Yamazaki Y. et al. // Space Weather. 2021. V. 19. No. 5. Art. No. e2020SW002641.
  15. Белов А.В., Ерошенко Е.А., Янке В.Г. и др. // Геомагн. и аэрономия. 2018. Т. 58. № 3. С. 374
  16. Belov A.V., Eroshenko E.A., Yanke V.G. et al. // Geomagn. Aeron. 2018. V. 58. No. 3. P. 356.
  17. Shlyk N.S., Belov A.V., Abunina M.A. et al. // Month. Notes Royal Astron. Soc. 2022. V. 511. No. 4. P. 5897.
  18. Richardson I.G., Cane H.V. // Solar Phys. 2011. V. 270. P. 609.
  19. Kumar A., Badruddin B. // Solar Phys. 2014. V. 289. P. 2177.
  20. Belov A., Abunina A., Abunina M. et al. // Solar Phys. 2015. V. 290. P. 1429.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025