Spatial Econometric Approach to Modeling Election Results in Russia: Municipal Level

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this article we assess the role of mutual influence of voters living in neighboring territories and the influence of socio-economic factors on the example of voting results for the main candidate in the 2018 elections in Russia. We claim that spatial factors (neighboring of municipalities, regions and belonging of municipalities to the same region) significantly affect the results of voting for the main candidate in each municipality. To confirm this hypothesis, we evaluated several different specifications of the Durbin model, which include dummy variables for the region and other spatial factors, and compared the results with the specifications of the model without taking into account spatial factors. We confirmed main hypothesis: the results of voting depend on the region in which the municipality is included, and, in addition, there is a positive spatial autocorrelation (the results of voting in neighboring municipalities depend on each other). The absence of consideration of spatial factors reduces the quality of regression fitting, there coefficient estimates are biased, and the qualitative picture of the results obtained is distorted. We also showed that the economic situation of the region also affects the results of the voting: economically stronger the municipality received higher share of votes for the main candidate.

Sobre autores

Lada Kuletskaya

National Research University Higher School of Economics

Pokrovsky bulvar 11

Olga Demidova

National Research University Higher School of Economics

Pokrovsky bul.11, office S 534

Elena Semerikova

National Research University Higher School of Economics

Pokrovsky bulvar 11

Bibliografia

  1. Алескеров Ф. Т., Бородин А. Д., Каспэ, С. И., Маршаков В. А., Салмин А. М. (2005). Анализ электоральных предпочтений в России в 1993–2003 гг.: динамика индекса поляризованности // Экономический Журнал Высшей Школы Экономики. Т. 9. № 2. С. 173–184. [Aleskerov F.T., Borodin A.D., Kaspe S.I., Marshakov V.A., Salmin A.M. (2005). Analysis of electoral preferences in Russia in 1993–2003: Polarization Index dynamics. Economic Journal Higher School of Economics, 9, 2, 173-184 (in Russian).]
  2. Алескеров Ф. Т., Голубенко М. А. (2003). Об оценке симметричности политических взглядов и поляризованности общества. Препринт ГУ Высшая Школа Экономики, WP7/2003/04, Москва. [Aleskerov F.T., Golubenko M.A. (2003). On the evaluation of a symmetry of political views and polarization of society. Working paper WP7/2003/04 — Moscow: State University — Higher School of Economics, 2003. — 24 p. (in Russian).]
  3. Ахременко А. С. (2007). Пространственное моделирование электорального выбора: развитие, современные проблемы и перспективы (II) // Полис. Политические Исследования. Т. 2. С. 165–179. [Akhremenko A.S. (2007). Spatial Modeling of Electoral Choice: Development, Modern Problems and Prospects (II). Polis. Political Studies, 2, 165–179 (In Russian).]
  4. Ахременко А. С. (2009). Пространственный электоральный анализ: характеристика метода, возможности кросснациональных сравнительных исследований // Политическая Наука. Т. 1. С. 32–59. [Akhremenko A.S. (2009). Spatial electoral analysis: characteristics of the method, possibilities of cross-national comparative studies. Political Science, 1, 32-59 (In Russian).]
  5. Бородин А. Д. (2005). Согласованность коллективных действий в поведении российских избирателей // Экономический Журнал Высшей Школы Экономики. Т. 9. № 1. С. 74-81. [Borodin A. D. (2005). Social Conformity in the Behavior of Russian Voters. Economic Journal Higher School of Economics, 9,1, 74–81 (in Russian).]
  6. Кулецкая Л. Е. (2021). Пространственные модели электорального выбора: обзор теоретических и эмпирических подходов // Пространственная Экономика. Т. 17. № 2. С. 127–164. [Kuletskaya L.E. (2021). Spatial Modeling of Voter Choice: The Survey of Theoretical and Empirical Approach. Spatial Economics, 17, 2, 127–164 (in Russian).]
  7. Подколзина Е. А., Демидова О. А., Кулецкая Л. Е. (2020). Пространственное моделирование электоральных предпочтений в Российской Федерации // Пространственная Экономика. Т. 16. № 2. С. 70-100. [Podkolzina E. A., Demidova O. A., Kuletskaya L. E. (2020). Spatial Modeling of Voting Preferences in Russian Federation. Spatial Economics, 16, 2, 70–100 (in Russian).]
  8. Arzheimer K., Evans J. (2012). Geolocation and voting: Candidate-voter distance effects on party choice in the 2010 UK general election in England. Political Geography, 31(5), 301–310. https://doi.org/10.1016/j.polgeo.2012.04.006
  9. Blank R. H. (1974). Socio-economic determinism of voting turnout: A challenge. The Journal of Politics, 36(3), 731–752.
  10. Bloise F., Chironi D., Pianta M. (2021). Inequality and voting in Italy’s regions. Territory, Politics, Governance, 9(3), 365–390.
  11. Burbank M. J. (1997). Explaining contextual effects on vote choice. Political Behavior, 19(2), 113–132. https://doi.org/10.1023/A:1024806024732
  12. Cho S., Endersby J. W. (2003). Issues, the spatial theory of voting, and British general elections: A comparison of proximity and directional models. Public Choice, 114(3–4), 275–293. https://doi.org/10.1023/A:1022616323373
  13. Clinton J. D. (2006). Representation in congress: Constituents and roll calls in the 106th House. Journal of Politics. https://doi.org/10.1111/j.1468-2508.2006.00415.x
  14. Coleman S. (2004). The effect of social conformity on collective voting behavior. Political Analysis, 12(1), 76–96. https://doi.org/10.1093/pan/mpg015
  15. Coleman S. (2007). Popular delusions: How social conformity molds society and politics. Cambria Press. https://doi.org/10.5860/choice.45-6399
  16. Coleman S. (2018). Voting and conformity: Russia, 1993 – 2016. Mathematical Social Sciences, 94, 87–95. https://doi.org/https://doi.org/10.1016/j.mathsocsci.2017.10.005
  17. Cox K. R. (1968). Suburbia and Voting Behavior in the London Metropolitan Area. Annals of the Association of American Geographers, 58(1), 111–127. https://doi.org/10.1111/j.1467-8306.1968.tb01639.x
  18. Cutts D., Webber D., Widdop P., Johnston R., Pattie C. (2014). With a little help from my neighbours : A spatial analysis of the impact of local campaigns at the 2010 British general election. Electoral Studies, 34, 216–231. https://doi.org/10.1016/j.electstud.2013.12.001
  19. Davis O. A., Hinich M. J., Ordeshook P. C. (1970). An Expository Development of a Mathematical Model of the Electoral Process. The American Political Science Review, 64(2), 426–448. https://doi.org/10.2307/1953842
  20. de Dominicis L., Dijkstra L., Pontarollo N. (2022). Why are cities less opposed to European integration than rural areas? Factors affecting the Eurosceptic vote by degree of urbanization. Cities, 130, 103937.
  21. Downs, A. (1957). An economic theory of political action in a democracy. Journal of Political Economy, 65(2), 135–150. https://doi.org/10.1111/j.1467-6435.1986.tb01254.x
  22. Duggan J. (2005). A survey of equilibrium analysis in spatial models of elections. Unpublished Manuscript.
  23. Durlauf S. N. (2004). Neighborhood Effects. In Handbook of regional and urban economics (pp. 2173–2242). Elsevier. https://doi.org/10.1016/B978-008044910-4.00480-6
  24. Elinder M. (2010). Local economies and general elections: The influence of municipal and regional economic conditions on voting in Sweden 1985–2002. European Journal of Political Economy, 26(2), 279–292. https://doi.org/https://doi.org/10.1016/j.ejpoleco.2010.01.003
  25. Enelow J. M., Hinich M. J. (1989). A general probabilistic spatial theory of elections. Public Choice, 61(2), 101–113. https://doi.org/10.1007/bf00115657
  26. Erikson R. S., Romero D. W. (1990). Candidate Equilibrium and the Behavioral Model of the Vote. American Political Science Review, 84(4), 1103–1126. https://doi.org/10.2307/1963255
  27. Ethington P. J., McDaniel J. A. (2007). Political places and institutional spaces: The intersection of political science and political geography. Annual Review of Political Science, 10, 127–142. https://doi.org/10.1146/annurev.polisci.10.080505.100522
  28. Gerber A. S., Rogers T. (2004). Descriptive social norms and motivation to vote: Everybody’s voting and so should you. The Journal of Politics, 71(1), 178–191. https://doi.org/10.1017/S0022381608090117
  29. Hinich M. J., Pollard W. (1981). A New Approach to the Spatial Theory of Electoral Competition. American Journal of Political Science, 25(2), 323–341. https://doi.org/10.2307/2110856
  30. Huckfeldt R., Sprague J. (1991). Discussant effects on vote choice: Intimacy, structure, and interdependence. The Journal of Politics, 53(1), 122–158.
  31. Iversen T. (1994a). Political leadership and representation in West European democracies: A test of three models of voting. American Journal of Political Science, 45–74. https://doi.org/10.2307/2111335
  32. Iversen T. (1994b). The logics of electoral politics: Spatial, directional, and mobilizational effects. Comparative Political Studies, 27(2), 155–189. https://doi.org/10.1177/0010414094027002001
  33. Jensen C. D., Lacombe D. J., McIntyre S. G. (2013). A Bayesian spatial econometric analysis of the 2010 UK General Election. Papers in Regional Science, 92(3), 651–666. https://doi.org/https://doi.org/10.1111/j.1435-5957.2012.00415.x
  34. Jessee S. A. (2010). Partisan bias, political information and spatial voting in the 2008 presidential election. Journal of Politics, 72(2), 327–340. https://doi.org/10.1017/S0022381609990764
  35. Johnson M., Shively W.P., Stein R. M. (2002). Contextual data and the study of elections and voting behavior: Connecting individuals to environments. Electoral Studies, 21(2), 219–233. https://doi.org/10.1016/S0261-3794(01)00019-1
  36. Kelejian H. H., Prucha I. R. (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. The Journal of Real Estate Finance and Economics, 17(1), 99–121. https://doi.org/10.1177/1536867x1301300201
  37. Kim J., Elliott E., Wang D. (2003). A spatial analysis of county-level outcomes in US Presidential elections : 1988 – 2000. Electoral Studies, 22, 741–761. https://doi.org/10.1016/S0261-3794(02)00008-2
  38. Lacombe D. J., Shaughnessy T. M. (2007). Accounting for Spatial Error Correlation in the 2004 Presidential Popular Vote. Public Finance Review, 35(4), 480–499. https://doi.org/10.1177/1091142106295768
  39. Leenders R. T. A. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24(1), 21–47. https://doi.org/10.1016/S0378-8733(01)00049-1
  40. LeSage J. P., Pace R. K. (2009). Introduction to spatial econometrics. Boca Raton, US: CRC Press Taylor, Francis Group. 340 p.
  41. Macdonald S. E., Listhaug O., Rabinowitz G. (1991). Issues and party support in multiparty systems. The American Political Science Review, 1107–1131. https://doi.org/10.2307/1963938
  42. Moraski B., Reisinger W. M. (2010). Spatial Contagion in Regional Machine Strength: Evidence from Voting in Russia’s Federal Elections. In APSA 2010 Annual Meeting Paper (p. 48).
  43. Nieuwbeerta P., Flap H. (2000). Crosscutting social circles and political choice Effects of personal network composition on voting behavior in The Netherlands. Social Networks, 22, 313–335.
  44. Nwankwo C. F. (2019). The spatial pattern of voter choice homogeneity in the Nigerian presidential elections of the fourth republic. Bulletin of Geography, 43(1), 143–165. https://doi.org/10.2478/bog-2019-0010
  45. Pattie C., Johnston R. (2000). “People who talk together vote together”: An exploration of contextual effects in Great Britain. Annals of the Association of American Geographers, 90(1), 41–66. https://doi.org/10.1111/0004-5608.00183
  46. Podkolzina E., Kuletskaya L., Demidova O. (2022). Spatial modelling of voting preferences: The “Mystery” of the Republic of Tatarstan. Applied Econometrics, 67, 74–96.
  47. Poole K. T. (2005). Spatial models of parliamentary voting. Spatial Models of Parliamentary Voting. https://doi.org/10.1017/CBO9780511614644
  48. Poole K. T., Rosenthal H. (1984). U.S. Presidential Elections 1968-80: A Spatial Analysis. American Journal of Political Science, 28(2), 282–312. https://doi.org/10.2307/2110874
  49. Rabinowitz G., Macdonald S. E. (1989). A directional theory of issue voting. The American Political Science Review, 93–121. https://doi.org/10.2307/1956436
  50. Reisinger W. M., Moraski B. J. (2009). Regional Voting in Russia’ s Federal Elections and Changing Regional Deference to the Kremlin. In Annual National Conference of the Midwest Political Science Association, 67th (Chicago, Illinois) (p. 42). https://doi.org/https://doi.org/10.17077/g02k-n8zq
  51. Reitan T. C. (2003). Too sick to vote? Public health and voter turnout in Russia during the 1990s. Communist and Post-Communist Studies, 36(1), 49–68.
  52. Sharafutdinova G., Turovsky R. (2017). The politics of federal transfers in Putin’s Russia: regional competition, lobbying, and federal priorities. Post-Soviet Affairs, 33(2), 161–175.
  53. Stekhoven D. J., Bühlmann P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.
  54. Stoetzer L. F. (2017). A Matter of Representation: Spatial Voting and Inconsistent Policy Preferences. British Journal of Political Science, 49(3), 941–956. https://doi.org/10.1017/S0007123417000102
  55. Tucker J. A., Tucker J. L., Martin R. A. (2006). Regional Economic Voting: Russia, Poland, Hungary, Slovakia, and the Czech Republic, 1990-1999. Cambridge University Press.
  56. Turovsky R., Gaivoronsky Y. (2017). Russia’s regions as winners and losers: Political motives and outcomes in the distribution of federal government transfers. European Politics and Society, 18(4), 529–551.
  57. Wuhs S., McLaughlin E. (2019). Explaining Germany’s electoral geography: Evidence from the eastern states. German Politics and Society, 37(1), 1–23. https://doi.org/10.3167/gps.2018.370101

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023