Оксид алюминия в формировании активных центров кобальтовых катализаторов синтеза Фишера–Тропша

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Мини-обзор посвящен роли оксида алюминия, применяемого в качестве носителя и/или связующего, в формировании активных центров кобальтовых катализаторов синтеза Фишера–Тропша. Показаны некоторые особенности физико-химических свойств Al2O3, знание которых может быть полезным при разработке новых катализаторов. Продемонстрированы возможности для улучшения каталитических характеристик за счет оптимизации формы и размера частиц, а также степени восстановления Со при использовании Al2O3 в качестве носителя или компонента носителя. Библиография: 75 ссылок.

Полный текст

Доступ закрыт

Об авторах

Л. В. Синева

НИЦ Курчатовский институт — ТИСНУМ

Автор, ответственный за переписку.
Email: sinevalv@tisnum.ru
Россия, ул. Центральная, 7а, Москва, Троицк, 108840

Е. Ю. Асалиева

НИЦ Курчатовский институт — ТИСНУМ

Email: sinevalv@tisnum.ru
Россия, ул. Центральная, 7а, Москва, Троицк, 108840

В. З. Мордкович

НИЦ Курчатовский институт — ТИСНУМ

Email: sinevalv@tisnum.ru
Россия, ул. Центральная, 7а, Москва, Троицк, 108840

Список литературы

  1. Cheng K., Kang J., King D.L., Subramanian V., Zhou C., Zhang Q., Wang Y. // Adv. Catal. 2017. V. 60. P. 125. doi: 10.1016/bs.acat.2017.09.003
  2. Senecal P., Jacques S.D.M., Michiell M.D., Kimber S.A.J., Vamvakeros A., Odarchenko Y., Lezcano-Gonzalez I., Paterson J., Ferguson E., Beale A.M. // ACS Catal. 2017. V. 7. № 4. P. 2284.
  3. Tsakoumis N.E., Voronov A., Ronning M., van Beek W., Borg O., Rytter E., Holmen A. // J. Catal. 2012. V. 291. P. 138.
  4. Fischer N., Clapham B., Feltes T., Claeys M. // ACS Catal. 2015. V. 5. № 1. P. 113.
  5. Sadeqzadeh M., Karaca H., Safonova O.V., Fongarland P., Chambrey S., Roussel P., Griboval-Constant A., Lacroix M., Curulla-Ferré D., Luck F., Khodakov A.Y. // Catal. Today. 2011. V. 164. P. 62.
  6. Cats K.H., Gonzalez-Jimenez I. D., Liu Y., Nelson J., van Campen D., Meirer F., van der Eerden A.M.J., de Groot F.M.F., Andrews J.C., Weckhuysen B.M. // Chem. Commun. 2013. V. 49. № 41. P. 4622.
  7. Shiba N.C., Liu X., Mao H., Qian X., Hildebrandt D., Yao Y. // Fuel. 2022 V. 320. Art. 123939.
  8. Jacobs G., Das T.K., Zhang Y., Li J., Racoillet G., Davis B.H. // Appl. Catal. A: Gen. 2002. V. 233. P. 263.
  9. Chen W., Lin T., Dai Y., An Y., Yu F., Zhong L., Li S., Sun Y. // Catal. Today. 2018. V. 311. P. 8.
  10. Yang N., Bent S. F. // J. Catal. 2017. V. 351. P. 49.
  11. Cheng Q., Liu Y., Lyu S., Tian Y., Ma Q., Li X. // Chin. J. Chem. Eng. 2021. V. 35. P. 220.
  12. Munirathinam R., Minh D.P., Nzihou A. // Ind. Eng. Chem. Res. 2018. V. 57. № 48 P. 16137.
  13. Nikolopoulos N., Wickramasinghe A., Whiting G.T., Weckhuysen B.M. // Catal. Sci. Technol. 2023. V. 13. № 3. P. 862.
  14. Lakiss L., Gilson J.-P., Valtchev V., Mintova S., Vicente A., Vimont A., Bedard R., Abdo S., Bricker J. // Micropor. Mesopor. Mater. 2020. V. 299. Art. 110114.
  15. Hargreaves J.S.J., Munnoch A.L. // Catal. Sci. Technol. 2013. V. 3. P. 1165.
  16. Shihabi D.S., Garwood W.E., Chu P., Miale J. N., Lago R.M., Chu C.T.-W., Chang C. D. // J. Catal. 1985. V. 93. P. 471.
  17. Jacobs G., Ji Y., Davis B.H., Cronauer D., Kropf A.J., Marshall C.L. // Appl. Catal. A: Gen. 2007. V. 333. P. 177.
  18. Shiba N.C., Liu X., Yao Y. // Reactions. 2023. V. 4. P. 420.
  19. Lögdberg S., Yang J., Lualdi M., Walmsley J.C., Järås S., Boutonnet M., Blekkan E.A., Rytter E., Holmen A. // J. Catal. A: Gen. 2017. V. 352. P. 515.
  20. Shiba N.C., Liu X., Hildebrandt D., Yao Y. // Reactions. 2021. V. 2. P. 258.
  21. Braconnier L., Landrivon E., Clémençon I., Legens C., Diehl F., Schuurman Y. // Catal. Today. 2013. V. 215. P. 18.
  22. Storsæter S., Tøtdal B., Walmsley J.C., Tanem B.S., Holmen A. // J. Catal. 2005. V. 236. № 1. P. 139.
  23. ten Have I.C., Weckhuysen B.M. // Chem. Catal. 2021. V. 1. № 2. P. 339.
  24. Liu J.-X., Wang P., Xu W., Hensen E.J.M. // Engineering. 2017. V. 3. № 4. P. 467.
  25. Kitakami O., Sato H., Shimada Y., Sato F., Tanaka M. // Phys. Rev. B. 1997. V. 56. № 21. P. 13849.
  26. Fischer N., van Steen E., Claeys M. // Catal. Today. 2011. V. 171. № 1. P. 174.
  27. Lyu S., Wang L., Zhang J., Liu C., Sun J., Peng B., Wang Y., Rappé K.G., Zhang Y., Li J., Nie L. // ACS Catal. 2018. V. 8. P. 7787.
  28. Liu Y., Chen C., Hou B., Jia L., Wang J., Ma Z., Wang Q., Li D. // Mol. Catal. 2023. V. 544. Art. 113184.
  29. Gnanamani M.K., Jacobs G., Shafer W.D., Davis B.H. // Catal. Today. 2013. V. 215. P. 13.
  30. Du H., Jiang M., Zhu H., Huang C., Zhao Z., Dong W., Lu W., Liu T., Zhang Z.C., Ding Y. // Fuel. 2021. V. 292. Art. 1202443.
  31. Liu J., Su H., Sun D., Zhang B., Li W. // J. Am. Chem. Soc. 2013. V. 135. № 44. P. 16284.
  32. Patanou E., Tsakoumis N.E., Myrstad R., Blekkan E.A. // Appl. Catal. A: Gen. 2018. V. 549. P. 280.
  33. van Helden P., Ciobîcă I.M., Coetzer R.L.J. // Catal. Today. 2016. V. 261. P. 48.
  34. Ma C., Yun Y., Zhang T., Suo H., Yan L., Shen X., Li Y., Yang Y. // ChemCatChem. 2021. V. 13. P. 4350.
  35. Karaca H., Safonova O.V., Chambrey S., Fongarland P., Roussel P., Griboval-Constant A., Lacroix M., Khodakov A.Y. // J. Catal. 2011. V. 277. № 1. P. 14.
  36. Булавченко О.А., Черепанова С.В. Малахов В.В., Довлитова Л.С. Ищенко А.В., Цыбуля С.В. // Кинетика и катализ. 2009. Т. 50. № 2. C. 205.
  37. Кобозев Н. И. // Ж. физ. химии. 1939. Т. 13. С. 1.
  38. Weststrate C.J., Mahmoodinia M., Farstad M.H., Svenum I.-H., Strømsheim M.D., Niemantsverdriet J.W., Venvik H.J. // Catal. Today. 2020. V. 342. P. 124.
  39. Tuxen A., Carenco S., Chintapalli M., Chuang C.-H., Escudero C., Pach E., Jiang P., Borondics F., Beberwyck B., Alivisatos A.P., Thornton G., Pong W.-F., Guo J., Perez R., Besenbacher F., Salmeron M. // J. Am. Chem. Soc. 2013. V. 135. № 6. P. 2273.
  40. Chen C., Wang Q., Wang G., Hou B., Jia L., Li D. // J. Phys. Chem. C. 2016. V. 120. № 17. P. 9132.
  41. Liu S., Li Y.-W., Wang J., Jiao H. // Catal. Sci. Technol. 2016. V. 6. P. 8336.
  42. Geerlings J.J.C., Zonnevylle M.C., de Groot C.P.M. // Surf. Sci. 1991. V. 241. № 3. P. 315.
  43. Ducreux O., Rebours B., Lynch J., Roy-Auberger M., Bazin D. // Oil Gas Sci. Technol. – Rev. IFP. 2009. V. 64. № 1. P. 49.
  44. Gnanamani M.K., Jacobs G., Graham U.M., Ribeiro M.C., Noronha F.B., Shafer W.D., Davis B.H. // Catal. Today. 2016. V. 261. P. 40.
  45. Pei Y.P., Liu J.X., Zhao Y.H., Ding Y.J., Liu T., Dong W. Da, Zhu H.J., Su H.Y., Yan L., Li J.L. // ACS Catal. 2015. V. 5. P. 3620.
  46. Qi Z., Chen L., Zhang S., Su J., Somorjai G.A. // Appl. Catal. A: Gen. 2020. V. 602, P. 117701.
  47. Fang X., Liu B., Cao K., Yang P., Zhao Q., Jiang F., Xu Y., Chen R., Liu X. // ACS Catal. 2020. V. 10. № 4. P. 2799.
  48. Lee W.H., Bartholomew C.H. // J. Catal. 1989. V. 120. № 1. P. 256.
  49. Lapidus A., Krylova A., Rathousky J., Zukal A., Jancalkova M. // Appl. Catal. A: Gen. 1992. V. 80. № 1. P. 1.
  50. Shiba N.C., Yao Y., Forbes R.P., Okoye-Chine C.G., Liu X., Hildebrandt D. // Fuel Proc. Technol. 2021. V. 216. Art. 106781.
  51. Sexton B.A., Hughes A.E., Turney T.W. // J. Catal. 1986. V. 97. P. 390.
  52. Cherepanova S.V., Koemets E.G., Gerasimov E.Yu., Simentsova I.I., Bulavchenko O.A. // Materials. 2023. V. 16. P. 6216.
  53. Khodakov A.Y., Lynch J., Bazin D., Rebours B., Zanier N., Moisson B., Chaumette P. // J. Catal. 1997. V. 168 P. 16.
  54. Puskas I., Fleisch T.H., Full P.R., Kaduk J.A., Marshall C.L., Meyers B.L. // Appl. Catal. A: Gen. 2006. V. 311. P. 146.
  55. Li C., Wong L., Tang L., Scarlett N.V.Y., Chiang K., Patel J., Burke N., Sage V. // Appl. Catal. A: Gen. 2017. V. 537. P. 1.
  56. Chu W., Chernavskii P.A., Gengembre L., Pankina G.A., Fongarland P., Khodakov A.Y. // J. Catal. 2007. V. 252. № 2. P. 215.
  57. Jacobs G., Ma W., Gao P., Todic B., Bhatelia T., Bukur D.B., Davis B.H. // Catal. Today. 2013. V. 214. P. 100.
  58. Lapidus A., Krylova A., Kazanskii V., Borovkov V., Zaitsev A., Rathousky J., Zukal A., Jancalkova M. // Appl. Catal. A: Gen. 1991. V. 73. № 1. P. 65.
  59. Borg Ø., Eri S., Blekkan E.A., Storsæter S., Wigum H., Rytter E., Holmen A. // J. Catal. 2007. V. 248. № 1. P. 89.
  60. Rane S., Borg Ø., Rytter E., Holmen A. // Appl. Catal. A: Gen. 2012. V. 437. P. 10.
  61. Хасин А.А., Юрьева Т.М., Пармон В.Н. // Доклады Академии наук. 1999. Т. 367. № 3. С. 367.
  62. Clarkson J., Ellis P.R., Humble R., Kelly G.J., McKenna M., West J. // Appl. Catal. A: Gen. 2018. V. 550. P. 28.
  63. Shimura K., Miyazawa T., Hanaoka T., Hirata S. // J. Mol. Catal. A: Chem. 2014. V. 394. P. 22.
  64. Park J.-Y., Lee Y.-J., Karandikar P.R., Jun K.-W., Ha K.-S., Park H.-G. // Appl. Catal. A: Gen. 2012. V. 411–412. P. 15.
  65. Ji L., Lin J., Zeng H.C. // J. Phys. Chem. B. 2000. V. 104. № 8. P. 1783.
  66. Rahmati M., Huang B., Mortensen M.K., Keyvanloo K., Fletcher T.H., Woodfield B.F., Hecker W.C., Argyle M.D. // J. Catal. 2018. V. 359. P. 92.
  67. Bolt P.H., Habraken F.H.P.M., Geus J.W. // J. Solid State Chem. 1998. V. 135. № 1. P. 59.
  68. Zhang J., Chen J., Ren J., Sun Y. // Appl. Catal. A: Gen. 2003 V. 243. № 1. P. 121.
  69. Paredes-Nunez A., Lorito D., Guilhaume N., Mirodatos C., Schuurman Y., Meunier F.C. // Catal. Today. 2015. V. 242. P. 178.
  70. Szanyi J., Kwak J.H. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 15117.
  71. Shopska M.G., Shtereva I.Z., Kolev H.G., Tenchev K.K., Todorova S.Z., Kadinov G.B. // Croat. Chem. Acta. 2020. V. 93. № 2. P. 121.
  72. Weilach C., Spiel C., Föttinger K., Rupprechter G. // Surf. Sci. 2011. V. 605. № 15–16. P. 1503.
  73. Liu Y., Jia L., Hou B., Sun D., Li D. // Appl. Catal. A: Gen. 2017. V. 530. P. 30.
  74. Wang J., Wang J., Huang X., Chen C., Ma Z., Jia L., Hou B., Li D. // Int. J. Hydrogen Energy. 2018. V. 43. № 29. Р. 13122.
  75. Fratalocchi L., Visconti C.G, Lietti L. // Appl. Catal. A: Gen. 2020. V. 595. Art. 117514.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схематическое изображение взаимосвязи между свойствами катализатора, того, чем они обеспечиваются, и показателями СФТ.

Скачать (355KB)
3. Рис. 2. Зависимость степени восстановления и размера частиц Со от его содержания и типа носителя (диаграммы построены по данным работы [8]).

Скачать (225KB)
4. Рис. 3. Модель поверхности катализатора Сo/Al2O3 (представление не претендует на соответствие фактическим распределению и масштабу).

Скачать (274KB)