Phytostimulation Activity of Methylobacterium dichloromethanicum subsp. dichloromethanicum DM4 and Its groEL2 Gene Knockout Mutant
- Autores: Agafonova N.V.1, Ekimova G.A.1, Firsova Y.E.1, Torgonskaya M.L.1
-
Afiliações:
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences
- Edição: Volume 61, Nº 1 (2025)
- Páginas: 77-88
- Seção: Articles
- URL: https://jdigitaldiagnostics.com/0555-1099/article/view/683314
- DOI: https://doi.org/10.31857/S0555109925010088
- EDN: https://elibrary.ru/DAFXRF
- ID: 683314
Citar
Resumo
For the first time, the genome of the dichloromethane destructor Methylobacterium dichloromethanicum subsp. dichloromethanicum DM4 was analyzed for the presence of genetic determinants indicating its potential as a plant growth stimulator, and the ability of this strain and its groEL2 gene mutant for the to improve plant growth was determined. The genome of strain DM4 contains genes involved in the biosynthesis of phytohormones (indolyl-3-acetic acid and cytokinins), siderophores, carotenoids, poly-β-hydroxybutyrate, hydrolytic enzymes, as well as enzymes involved in the degradation of D-cysteine, protection from UV-damage and phosphate solubilization. Inoculation of lettuce sprouts by strain DM4 had a positive effect on plant growth and development, and increased adaptive defense and resistance to short-term temperature stress in plant growth experiments. Comparative analysis of the production of auxins, siderophores, hydrolytic enzymes, D-cysteine desulfohydrase activity, and the ability to solubilize insoluble phosphates in strains DM4 and DM4 ΔgroEL2 showed that disruption of the groEL2 gene led to a decrease in the synthesis of indole derivatives and phosphate solubilizing ability in the mutant strain. Assessment of the impact of inoculation of lettuce plants by these strains also demonstrated a decrease in the phytostimulation potential of DM4 ΔgroEL2 compared to the original strain. The data obtained indicate that the chaperonin GroEL2 in M. dichloromethanicum subsp. dichloromethanicum DM4 indirectly affects its phytostimulation activity.
Texto integral

Sobre autores
N. Agafonova
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: nadyagafonova@gmail.com
Rússia, Pushchino, 142290
G. Ekimova
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences
Email: nadyagafonova@gmail.com
Rússia, Pushchino, 142290
Y. Firsova
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences
Email: nadyagafonova@gmail.com
Rússia, Pushchino, 142290
M. Torgonskaya
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences
Email: nadyagafonova@gmail.com
Rússia, Pushchino, 142290
Bibliografia
- Trotsenko Y.A., Khmelenina V.N. // Microbiology (Moscow). 2002. V. 71. P. 123–132. https://doi.org/10.1023/A:1015183832622
- Vuilleumier S. // Biotechnology for the Environment: Strategy and Fundamentals. / Eds. S. N. Agathos, W. Reineke.: Springer Dordrecht , 2002. P. 105–130. https://doi.org/10.1007/978-94-010-0357-5_7
- Torgonskaya M.L., Doronina N.V., Hourcade E., Trotsenko Y.A., Vuilleumier S. // J. Basic Microbiol. 2011. V. 51. P. 296–303. https://doi.org/10.1002/jobm.201000280
- Vorholt J.A. // Nat. Rev. Microbiol. 2012. V. 10. P. 828–840. https://doi.org/10.1038/nrmicro2910
- Fall R., Benson A.A. // Trends Plant Sci. 1996. V. 1. № 9. P. 296–301. https://doi.org/10.1016/S1360-1385(96)88175-0
- Федоров Д.Н., Доронина Н.В., Троценко Ю.А. // Микробиология. 2011. Т. 80. № 4. С. 435–446.
- Агафонова Н.В., Капаруллина Е.Н., Доронина Н.В., Троценко Ю.А. // Микробиология. 2014. Т. 83. № 1. С. 28–32. https://doi: 10.7868/S0026365614010029
- Kwak M.J., Jeong H., Madhaiyan M., Lee Y., Sa T.M., Oh T.K., Kim J.F. // PloS ONE. 2014. V. 9. P. e106704. https://doi.org/10.1371/journal.pone.0106704
- Alessa O., Ogura Y., Fujitani Y., Takami H., Hayashi T., Sahin N., Tani A. // Front Microbiol. 2021. V. 12. P. 740610. https://doi.org/10.3389/fmicb.2021.740610
- Kumar C.M., Mande S.C., Mahajan G. // Cell Stress Chaperones. 2015. V. 20. № 4. P. 555–574. https://doi.org/10.1007/s12192-015-0598-8
- Hayer-Hartl M., Bracher A., Hartl F.U. // Trends Biochem. Sci. 2016. V. 41. P. 62–76. https://doi.org/10.1016/j.tibs.2015.07.009
- Mizobata T., Kawata Y. // Biophys. Rev. 2018. V. 10. P. 631–640. https://doi.org/10.1007/s12551-017-0332-0
- Fischer H.M., Schneider K., Babst M., Hennecke H. // Arch. Microbiol. 1999. V. 171. P. 279–289. https://doi.org/10.1007/s002030050711
- Bittner A.N., Foltz A., Oke V. // J. Bacteriol. 2007. V. 189. P. 1884–1889. https://doi.org/10.1128/jb.01542-06
- Torgonskaya M. L., Firsova Y.E., Ekimova G.A., Grouzdev D.S., Agafonova N.V. // Microbiology (Moscow). 2024. V. 93. P. 14–27. https://doi.org/10.1134/S0026261723601768
- Doronina N.V, Trotsenko Y.A., Tourova T.P., Kuznetsov B.B., Leisinger T. // Syst. Appl. Microbiol. 2000. V. 23. P. 210–218. https://doi.org/10.1016/S0723-2020(00)80007-7
- Firsova Y.E., Torgonskaya M.L. // Antonie van Leeuwenhoek. 2020. V. 113. P. 101–116. https://doi.org/10.1007/s10482-019-01320-5
- Green P.N., Ardley J.K. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 2727–2748. https://doi.org/10.1099/ijsem.0.002856
- Firsova Y.E., Torgonskaya M.L., Trotsenko Y.A. // Microbiology (Moscow). 2015. V. 84. P. 796–803. https://doi.org/10.1134/S002626171506003X
- Aziz R.K., Bartels D., Best A.A., De Jongh M., Disz T., Edwards R.A. et al. // BMC genomics. 2008. V. 9. P. 1–15. https://doi.org/10.1186/1471-2164-9-75
- Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P. // Nucleic Acids Res. 2016. V. 44. P. 6614–6624. https://doi.org/10.1093/nar/gkw569
- Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. // Nucleic Acids Res. 2016. V. 44. P. D457–D462. https://doi.org/10.1093/nar/gkv1070
- Капаруллина Е.Н., Доронина Н.В., Мустахимов И.И., Агафонова Н.В., Троценко Ю.А. // Микробиология. 2017. Т. 86. № 1. С. 107–113. https://doi.org/10.7868/S0026365617010086
- Gordon S.A., Weber R.P. // Plant Physiol. 1951. V. 26. № 1. P. 192–195. https://doi.org/10.1104/pp.26.1.192
- Schwyn B., Neilands J.B. // Anal. Biochem. 1987. V. 160. № 1. P. 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
- Wang S., Wang J., Zhou Y., Huang Y., Tang X. // Curr. Microbiol. 2022. V. 79. № 2. P. 66. https://doi.org/10.1007/s00284-021-02755-8
- Rodríguez H., Gonzalez T., Selman G. // J. Biotechnol. 2000. V. 84 (2). P. 155–161. https://doi.org/10.1016/S0168-1656(00)00347-3
- Son H.J., Park G.T., Cha M.S., Heo M.S. // Bioresour. Technol. 2006. V. 97. № 2. P. 204–210. https://doi.org/10.1016/j.biortech.2005.02.021
- Jiang L., Seo J., Peng Y., Jeon D., Park S.J., Kim C.Y. et al. // AMB Express. 2023. V. 13. P. 9. https://doi.org/10.1186/s13568-023-01514-1
- Siegel M. // Anal. Biochem. 1965. V. 11. P. 126-132. https://doi.org/10.1016/0003-2697(65)90051-5
- Wintermans J.F.G.M., De Mots A. // Biochim. Biophys. Acta. 1965. V. 109. P. 448–453.
- Агафонова Н.В., Доронина Н.В., Троценко Ю.А. // Прикл. биохимия и микробиология. 2016. Т. 52. №. 2. С. 210–216. https://doi.org/10.7868/S0555109916020021
- Чернядьев И.И. // Прикл. биохимия и микробиология. 2001. Т. 37. С. 466–471.
- Pine L., Hoffman P.S., Malcolm G.B., Benson R.F., Keen M.G. // J. Clinic. Microbiol. 1984. V. 20. P. 421–429. https://doi.org/10.1128/jcm.20.3.421-429.1984
- Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Costa H., Gallego S.M., Tomaro M.L. // Plant Sci. 2002. V. 162. P. 939–945. https://doi.org/10.1016/S0168-9452(02)00051-1
- Vuilleumier S., Chistoserdova L., Lee M.C., Bringel F., Lajus A. et al. // PLoS ONE. 2009. V. 4. P. e5584. https://doi.org/10.1371/journal.pone.0005584
- Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. // J. Exp. Bot. 2011. V. 62. P. 2431–2452. https://doi.org/10.1093/jxb/err004
- Arif Y., Hayat S., Yusuf M., Bajguz A. // Plant Physiol. Biochem. 2021. V. 158. P. 372–384. https://doi.org/10.1016/j.plaphy.2020.11.045
- Jha P., Panwar J., Jha P.N. // J. Environ. Sustain. 2018. V. 1. P. 25–38. https://doi.org/10.1007/s42398-018-0011-5
- Verma V.C., Singh S.K., Prakash S. // J. Basic Microbiol. 2011. V. 51. P. 550–556. https://doi.org/10.1002/jobm.201000155
- Ghavami N., Alikhani H.A., Pourbabaei A.A., Besharati H. // J. Plant Nutr. 2017. V. 40. № 5. P. 736–746. https://doi.org/10.1080/01904167.2016.1262409
- Bianco C., Imperlini E., Defez R. // Plant Signal Behav. 2009. V. 4. P. 763–765. https://doi.org/10.1093/jxb/erp140
- Spaepen S., Das F., Luyten E., Michiels J., Vanderleyden J. // FEMS Microbiol. Lett. 2009. V. 291. P. 195–200. https://doi.org/10.1111/ j.1574-6968.2008.01453.x
- Федоров Д.Н., Бут С.Ю., Доронина Н.В., Троценко Ю.А. // Микробиология. 2009. Т. 78. № 6. С. 844–846.
- Patten C.L., Blakney A.J.C., Coulson T.J.D. // Crit. Rev. Microbiol. 2013. V. 39. P. 395–415. https://doi.org/10.3109/1040841X.2012.716819
- Lin H.R., Shu H.Y., Lin G.H. // Microbiol. Res. 2018. V. 216. P. 30–39. https://doi.org/org/10.1016/j.micres.2018.08.004
- Duca D.R., Glick B.R // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 8607–8619. https://doi.org/10.1007/s00253-020-10869-5
- Kunkel B.N., Johnson J.M.B. // Cold Spring Harb. Perspect. Biol. 2021. V. 13. P. a040022. https://doi.org/10.1101/cshperspect.a040022
- Ivanova L.A., Zolotareva N.V., Ronzhina D.A., Podgaevskaya E.N., Migalina S.V., Ivanov L.A. // Flora. 2018. V. 239. P. 11–19. https://doi.org/10.1016/j.flora.2017.11.005
- Esteban R., Barrutia O., Artetxe U., Fernández‐Marín B., Hernández A., García‐Plazaola J.I. // New Phytologist. 2015. V. 206. P. 268–280. https://doi.org/10.1111/nph.13186
- Mittler R. // Trends Plant Sci. 2002. V. 7. P. 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
- Нарайкина Н.В., Синькевич М.С., Дерябин А.Н., Трунова Т.И. // Физиология растений. 2018. Т. 65. № 5. С. 340–347. https://doi.org/10.1134/S0015330318050226
- Кошкин Е.И. Физиология устойчивости сельскохозяйственных культур. М.: Дрофа, 2010. 638 с.
Arquivos suplementares
