Comparative Evaluation of Effectiveness of Biocatalytic Synthesis and Antibacterial Activity of Known Antibiotics and “Chimeric” Cephalosporin Compounds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The processes of biocatalytic synthesis of cefamandole and cefazoline, as well as four “chimeric” cephalosporins carrying functional groups of these antibiotics in the C3 or C7 position of β-lactam, were carried out using immobilized cephalosporin-acid synthetase under mild standard conditions. A higher efficiency of biocatalytic acylation of β-lactams with a 1(H)-tetrazolylacetic acid residue compared to acylation with almond acid residue was demonstrated. The chemical structure of the obtained compounds was confirmed using the HPLC–MS method. The possibility of using directly reaction mixtures for evaluating the antibacterial activity of synthesized compounds without isolating the target products was demonstrated. The activity of the obtained cephalosporins against twelve microorganisms belonging to the genera Enterococcus, Acinetobacter, Serratia, Pseudomonas, Staphylococcus and Escherichia was evaluated by diffusion into agar. The activity of synthesized “chimeric” cephalosporins against four microorganisms was found: Escherichia coli VKPM B-6695, Staphylococcus aureus VKPM B-6646, Staphylococcus aureus VKPM B-8171 and Staphylococcus epidermidis VKPM B-12635.

全文:

受限制的访问

作者简介

A. Sklyarenko

National Research Center “Kurchatov Institute”

编辑信件的主要联系方式.
Email: ingagrosh@mail.ru
俄罗斯联邦, Moscow

I. Groshkova

National Research Center “Kurchatov Institute”

Email: ingagrosh@mail.ru
俄罗斯联邦, Moscow

N. Gorbunov

National Research Center “Kurchatov Institute”

Email: ingagrosh@mail.ru
俄罗斯联邦, Moscow

A. Vasiliev

National Research Center “Kurchatov Institute”

Email: ingagrosh@mail.ru
俄罗斯联邦, Moscow

A. Kamaev

National Research Center “Kurchatov Institute”

Email: ingagrosh@mail.ru
俄罗斯联邦, Moscow

S. Yarotsky

National Research Center “Kurchatov Institute”

Email: ingagrosh@mail.ru
俄罗斯联邦, Moscow

参考

  1. Verma T., Aggarwal A., Singh S., Sharma S., Sarma S.J. // J. Mol. Struct. 2022. V. 1248. P. 1‒13. https://doi.org/10.1016/j.molstruc.2021.131380
  2. Аркуша А.А. // Скиф. 2018. T.12. № 28. C. 7–19.
  3. Сидоренко С.В., Тишков В. И. // Успехи биологической химии. 2004. T. 44. C. 263‒306.
  4. Rodriguez-Herrera R., Puc L.E.C., Sobrevilla J.M.V., Luque D., Cardona-Felix C.S., Aguilar-Conzalez C.N. et al. // In: Enzymes in Food Biotechnology – Production, Applications, and Future Prospects. / Ed. M. Kuddus. Acad. Press. 2018. V. 36. P. 627‒643. https://doi.org/10.1016/B978-0-12-813280-7.00036-0
  5. Theuretzbacher U. // Curr. Opin. Pharmacol. 2011. V. 11. № 5. P. 433‒438. https://doi.org/10.1016/j.coph.2011.07.008
  6. Gaurav K., Karmakar S., Kundu S., Кundu K. // In: Antibiotic Resistant Bacteria – A Continuous Challenge in the New Millennium. / Ed. Dr. Marina Pana. InTech. 2012. P. 487‒502. https://doi.org/10.5772/29658
  7. Kurochkina V.B., Satarova D.E., Nys P.S. Moscow University Chemistry Bulletin. Biocatalysis. 2000. V. 41. № 6. Р. 139‒143.
  8. Курочкина В.Б., Ныс П.С. // Антибиотики и химиотерапия. 2002. № 2. С. 29‒37.
  9. Sklyarenko A.V., Groshkova I.A., Gorbunov N.A., Yarotsky S.V. // Appl. Biochem. Microbiol. 2023. T. 57. № 7. C. 1027‒1038. https://doi.org/10.1134/S0003683823070062
  10. Arroyo M., De la Mata I., García J.-L., Barredo J.-L. // Biotechnology of Microbial Enzymes. 2017. V. 17. P. 451‒473. https://doi.org/10.1016/B978-0-12-803725-6.00017-0
  11. Sklyarenko A.V., Eldarov M.A., Kurochkina V.B., Yarotsky S.V. // Appl. Biochem. Microbiol. 2015. V. 51. № 6. P. 627‒640. https://doi.org/10.1134/S0003683815060150
  12. Эльдаров М.А., Скляренко А.В., Думина М.В., Медведева Н.В., Жгун А.А., Сатарова Д.Э. и др. // Биомедицинская химия. 2015. T. 61. № 5. C. 646‒651. https://doi.org/10.18097/PBMC20156105646
  13. Sklyarenko A.V., Groshkova I.A., Sidorenko A.I., Yarotsky S.V. // Appl. Biochem. Microbiol. 2020. V. 56. № 5. P. 526‒537. https://doi.org/10.1134/S0003683820050130
  14. Sklyarenko A.V., Groshkova I.A., Krestyanova I.N., Yarotsky S.V. // Appl. Biochem. Microbiol. 2022. V. 58. № 3. P. 251‒260. https://doi.org/10.1134/S0003683822030127
  15. Sklyarenko A.V., Groshkova I.A., Gorbunov N.A., Yarotsky S.V. Appl. Biochem. Microbiol. 2023. T. 59. № 8. C. 1086‒1101. https://doi.org/10.1134/S0003683823080094
  16. Wang Lu, Sklyarenko A.V., Duanhua Li, Sidorenko A.I., Zhao C., Jinjun Li et al. // Bioprocess Biosyst. Eng. 2018. V. 41. № 12. P. 1851‒1867. https://doi.org/10.1007/s00449-018-2007-z
  17. Deaguero A.L., Blum J.K., Bommarius A.S. // In: Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. / Ed. M. C. Flickinger. John Wiley & Sons, 2012. P. 535‒567. https://doi.org/10.1002/9780470054581.eib640
  18. Кулешова С.И. // Ведомости Научного центра экспертизы средств медицинского применения. 2015. (3). C. 13‒17.
  19. Kurochkina V.B., Sklyarenko A.V. // In: Biotechnology: State of the Art and Prospects for Development / Ed. G.E. Zaikov. Nova Science Publishers, 2008. V. 20. P. 175‒204.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of kinetically controlled synthesis of cephalosporins.

下载 (14KB)
3. Fig. 2. Accumulation curves of cephalosporins during synthesis using the IECASA biocatalyst: 1 – CFM (7-TMCA_МА), 2 – S-p CFM (7-ACA_МА), 3 – Chimera (TDA_МА), 4 – CEZ (TDA_TzAA), 5 – Sp-CEZ (7-ACA_TzAA), 6 – Chimera (7-TMCA_TzAA). The formulas of cephalosporins are given in Table 2.

下载 (18KB)
4. Table 1.1

下载 (891B)
5. Table 1.2

下载 (269B)
6. Table 1.3

下载 (375B)
7. Table 1.4

下载 (261B)
8. Table 1.5

下载 (219B)
9. Table 1.6

下载 (267B)
10. Table 1.7

下载 (356B)
11. Table 1.8

下载 (299B)
12. Table 1.9

下载 (360B)
13. Table 1.10

下载 (286B)
14. Table 1.11

下载 (216B)
15. Table 1.12

下载 (300B)
16. Table 1.13

下载 (358B)
17. Table 2.1

下载 (836B)
18. Table 2.2

下载 (701B)
19. Table 2.3

下载 (754B)
20. Table 2.4

下载 (790B)
21. Table 2.5

下载 (786B)
22. Table 2.6

下载 (894B)

版权所有 © Russian Academy of Sciences, 2024