Effective Error Floor Estimation Based on Importance Sampling with the Uniform Distribution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A key problem of low-density parity-check (LDPC) codes analysis is estimation of an extremely low error floor that occurs at a high level of the signal-to-noise ratio (SNR). The importance sampling (IS) method is a popular approach to address this problem. Existing works typically use a normal sampling probability density function (PDF) with shifted mean, which yields a large variance of the estimate. In contrast, uniform distribution has equally probable samples on the entire range and thus should reduce the variance, but results in a biased estimation. This paper proposes a modified IS approach (IS-U) that allows considering the uniform distribution as a sampling PDF, and shows that this estimation is better than the traditional one. Also, this paper demonstrates that the existing criteria cannot be applied to evaluate the accuracy of the IS-U on the whole SNR range. To address this issue, a new metric is proposed, which uses only the convergence rate and does not depend on the true data.

About the authors

A. Yu. Uglovskiy

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences

Email: uglovski@iitp.ru
Moscow, Russia

I. A Mel'nikov

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences

Email: melnikov@iitp.ru
Moscow, Russia

I. A. Alekseev

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences

Email: alexeev@iitp.ru
Moscow, Russia

A. A. Kureev

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences

Author for correspondence.
Email: kureev@wireless.iitp.ru
Moscow, Russia

References

  1. Kruglik S.A., Potapova V.S., Frolov A.A. A Method for Constructing Parity-Check Matrices of Quasi-Cyclic LDPC Codes over GF(q) // J. Commun. Technol. Electron. 2018. V. 63. № 12. P. 1524–1529. https://doi.org/10.1134/S1064226918120112
  2. Smith B.P., Kschischang F.R. Future Prospects for FEC in Fiber-Optic Communications // IEEE J. Sel. Top. Quantum Electron. 2010. V. 16. № 5. P. 1245–1257. https://doi.org/10.1109/JSTQE.2010.2044749
  3. Kloek T., van Dijk H.K. Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo // Econometrica. 1978. V. 46. № 1. P. 1–19. https://doi.org/10.2307/1913641
  4. Kloek T., van Dijk H.K. Experiments with Some Alternatives for Simple Importance Sampling in Monte Carlo Integration // Report 8326/E, Erasmus Univ. Rotterdam, The Netherlands, 1983. https://doi.org/10.22004/ag.econ.272281
  5. Dolecek L., Zhang Z., Wainwright M., Anantharam V., Nikoli´c B. Evaluation of the Low Frame Error Rate Performance of LDPC Codes Using Importance Sampling // Proc. 2007 IEEE Information Theory Workshop (ITW’2007). Tahoe City, CA, USA. Sept. 2–6, 2007. P. 202–207. https://doi.org/10.1109/ITW.2007.4313074
  6. Neshaastegaran P., Banihashemi A.H., Gohary R.H. Error Floor Estimation of LDPC Coded Modulation Systems Using Importance Sampling // IEEE Trans. Commun. 2021. V. 69. № 5. P. 2784–2799. https://doi.org/10.1109/TCOMM.2021.3057625
  7. Cavus E., Haymes C.L., Daneshrad B. Low BER Performance Estimation of LDPC Codes via Application of Importance Sampling to Trapping Sets // IEEE Trans. Commun. 2009. V. 57. № P. 1886–1888. https://doi.org/10.1109/TCOMM.2009.07.050060
  8. Sakai T., Shibata K. A Study on Quick Simulation for Estimation of Low FER of LDPC Codes // Proc. 2009 IEEE 9th Malaysia Int. Conf. on Communications (MICC’2009). Kuala Lumpur, Malaysia. Dec. 15–17, 2009. P. 468–473. https://doi.org/10.1109/MICC.2009. 5431553
  9. Ferrari M., Bellini S. Importance Sampling Simulation of Concatenated Block Codes // IEE Proc. Commun. 2000. V. 147. № 5. P. 245–251. https://doi.org/10.1049/ip-com: 20000662
  10. Johnson S.J. Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat Accumulate Codes. Cambridge, UK: Cambridge Univ. Press, 2010. https://doi.org/10. 1017/CBO9780511809354
  11. Cole C., Wilson S., Hall E., Giallorenzi T. A General Method for Finding Low Error Rates of LDPC Codes. https://doi.org/10.48550/arXiv.cs/0605051 [cs.IT], 2006.
  12. Kim K.-J., Myung S., Jeong H. Lowering Error Floors by Removing Dominant Trapping Sets of Low-Density Parity-Check Codes for Broadcasting Systems // Proc. 2015 IEEE Int. Symp. on Broadband Multimedia Systems and Broadcasting (BMSB’2015). Ghent, Belgium. June 17–19, 2015. P. 1–3. https://doi.org/10.1109/BMSB.2015.7177241
  13. Chen J., Fossorier M.P.C. Density Evolution for Two Improved BP-Based Decoding Algorithms of LDPC Codes // IEEE Commun. Lett. 2002. V. 6. № 5. P. 208–210. https://doi.org/10.1109/4234.1001666
  14. MacKay D.J.C. Encyclopedia of Sparse Graph Codes (online database). http://www.inference.org.uk/mackay/codes/EN/C/96.33.964

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences