A component of the Nigella sativa plant as a radioprotector and antitumor drug

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To date, natural species are widely used as pharmaceutical agents for many human diseases. One of these is the seeds of Nigella sativa and its constituent thymoquinone (TQ). Being a biologically active compound, TQ has a variety of therapeutic properties, including antioxidant, anti-inflammatory, antitumor and a number of others. TQ is an absorber of free and superoxide radicals, therefore it is a promising natural radioprotector against the immunosuppressive and oxidative effects of ionizing radiation. The review presents data on the radioprotective properties of TQ and some mechanisms of its activity. In addition, TQ exhibits antitumor activity by inhibiting cell proliferation, migration and invasion. Despite the fact that TQ induces apoptosis by regulating the expression of pro-apoptotic and anti-apoptotic genes in many types of cancer, the mechanism of action of TQ in oncological diseases has not yet been fully studied. Thus, this review highlights the mechanisms of action of TQ as a promising radioprotector and as a future candidate for antitumor therapy.

Full Text

Restricted Access

About the authors

D. V. Fomina

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Author for correspondence.
Email: dasha_saleeva@inbox.ru
Russian Federation, Moscow

S. A. Abdullaev

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: dasha_saleeva@inbox.ru
Russian Federation, Moscow; Pushchino

N. F. Raeva

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: dasha_saleeva@inbox.ru
Russian Federation, Moscow

G. D. Zasukhina

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency; Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: dasha_saleeva@inbox.ru
Russian Federation, Moscow; Moscow

References

  1. Hago S., Lu T., Alzain A.A. et al. Phytochemical constituents, in-vitro anticancer activity and computational studies of Cymbopogon schoenanthus. Nat. Prot. Res. 2023;5:1-7. doi: 10.1080/14786419.2023.2208360.
  2. Almajali B., Al-Jamal H.A.N., Taib W.R.W. et al. Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals (Basel). 2021;14(4):369. doi: 10.3390/ph14040369
  3. Maideen N.M.P. Antidiabetic Activity of Nigella Sativa (Black Seeds) and Its Active Constituent (Thymoquinone): A Review of Human and Experimental Animal Studies. Chonnam. Med. J. 2021;57(3):169-175. doi: 10.4068/cmj.2021.57.3.169.
  4. Taysi S., Algburi F.S., Mohammed Z.R. et al. Thymoquinone: A Review on its Pharmacological Importance, and its Association with Oxidative Stress, COVID-19, and Radiotherapy. Mini Rev. Med. Chem. 2022;22(14):1847-1875. doi: 10.2174/1389557522666220104151225
  5. Abdelrahim M., Esmail A., Al Saadi N. et al. Thymoquinone’s Antiviral Effects: It is Time to be Proven in the Covid-19 Pandemic Era and its Omicron Variant Surge. Front Pharmacol. 2022;5(13):848676. doi: 10.3389/fphar.2022.848676
  6. Akyuz M., Taysi S., Baysal E. et al. Radioprotective effect of thymoquinone on salivary gland of rats exposed to total cranial irradiation. Head. Neck. 2017;39(10):2027-2035. doi: 10.1002/hed.24861.
  7. Demir E., Taysi S., Ulusal H. et al. Nigella sativa oil and thymoquinone reduce oxidative stress in the brain tissue of rats exposed to total head irradiation. Int. J. Radiat. Biol. 2020;96(2):228-235. doi: 10.1080/09553002.2020.1683636.
  8. Deniz C.D., Aktan M., Erel O. et al. Evaluation of the radioprotective effects of thymoquinone on dynamic thiol-disulphide homeostasis during total-body irradiation in rats. J. Radiat. Res. 2019;60(1):23-28. doi: 10.1093/jrr/rry083
  9. Goleva T.N., Rogov A.G., Korshunova G.A. et al. SkQThy, a novel and promising mitochondria-targeted antioxidant. Mitochondrion. 2019;49:206-216. doi: 10.1016/j.mito.2019.09.001.
  10. Chen H., Zhuo C., Zu A. et al. Thymoquinone ameliorates pressure overload-induced cardiac hypertrophy by activating the AMPK signalling pathway. J. Cell Mol. Med. 2022;26(3):855-867. doi: 10.1111/jcmm.17138.
  11. Dera A.A., Al Fayi M., Otifi H. et al. Rajagopalan P. Thymoquinone (Tq) protects necroptosis induced by autophagy/mitophagy-dependent oxidative stress in human bronchial epithelial cells exposed to cigarette smoke extract (CSE). J. Food Biochem. 2020;44(9):e13366. doi: 10.1111/jfbc.13366.
  12. Moshafi M.H., Torabizadeh S.A., Mohamadnezhad F. et al. Ferulago angulata as a Good Radioprotector Against Genotoxicity. Curr. Radiopharm. 2022;15(2):110-116. doi: 10.2174/1874471014666210426111806
  13. ОНКО-ONCO: ОНКОЛОГИЧЕСКИЕ ЗАБОЛЕВАНИЯ В РОССИИ И МИРЕ / “Мониторинго-экспертные исследования: знать и победить рак”. Вып. 55. Научн. рук. З.А. Саидова / Гл. ред. Комарова А.И. Т. 846(888). М., 2022. [ONKO-ONCO: ONKOLOGICHESKIE ZABOLEVANIYA V ROSSII I MIRE / “Monitoringo-ekspertnye issledovaniya: znat’ i pobedit’ rak”. Vyp. 55. Nauchn. ruk. Z.A. Saidova / Gl. red. Komarova A.I. Tom 846(888). M., 2022. (In Russ.)]
  14. Zhong T., Zhang W., Guo H. et al. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm. Sin. B. 2022;12(4):1761-1780. doi: 10.1016/j.apsb.2021.11.001
  15. Adinew G.M., Messeha S.S., Taka E. et al. Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells. Nutrients. 2022;14(22):4787. doi: 10.3390/nu14224787.
  16. Hamaamin K.S., Marouf B.H. Chemopreventive Efficacy of Thymoquinone in Chemically Induced Urinary Bladder Carcinogenesis in Rat. Biomed. Res. Int. 2022; 2022:6276768. doi: 10.1155/2022/6276768.
  17. Soltanfar A., Meimandi Parizi A., Foad-Noorbakhsh M. et al. The healing effects of thymoquinone on experimentally induced traumatic tendinopathy in rabbits. J. Orthop. Surg. Res. 2023;18(1):233. doi: 10.1186/s13018-023-03706-8.
  18. Zhao Z., Liu L., Li S.et al. Advances in research on the relationship between thymoquinone and pancreatic cancer. Front. Oncol. 2023;12:1092020. doi: 10.3389/fonc.2022.1092020
  19. Mizuno M., Fukuhara K. Antioxidant and Prooxidant Effects of Thymoquinone and Its Hydroquinone Metabolite. Biol. Pharm. Bull. 2022;45(9):1389-1393. doi: 10.1248/bpb.b22-00199
  20. Mollazadeh H., Afshari A.R., Hosseinzadeh H. Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis: — Black cumin and cancer. J. Pharmacopuncture. 2017;20(3):158-172. doi: 10.3831/KPI.2017.20.019
  21. Dastjerdi M.N., Mehdiabady E.M., Iranpour F.G. et al. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line. Int. J. Prev. Med. 2016;7:66. doi: 10.4103/2008-7802.180412
  22. Zhang H., Zhang Z., Gao L. et al. miR-1-3p suppresses proliferation of hepatocellular carcinoma through targeting SOX9. OncoTargets Ther. 2019;12:2149–2157. doi: 10.2147/OTT.S197326
  23. Tadros S.A., Attia Y.M., Maurice N.W. et al.Thymoquinone Suppresses Angiogenesis in DEN-Induced Hepatocellular Carcinoma by Targeting miR-1-3p. Int. J. Mol. Sci. 2022;23(24):15904. doi: 10.3390/ijms232415904.
  24. Butt M.S., Imran M., Imran A. et al. Therapeutic perspective of thymoquinone: A mechanistic treatise. Food Sci. Nutr. 2021;9(3):1792-1809. doi: 10.1002/fsn3.2070
  25. Karimi Z., Mirza Alizadeh A. et al. Nigella sativaand its Derivatives as Food Toxicity Protectant Agents. Adv. Pharm. Bull. 2019;9(1):22-37. doi: 10.15171/apb.2019.004.
  26. Aziz N., Son Y.J., Cho J.Y. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1. Int. J. Mol. Sci. 2018;19(5):1355. doi: 10.3390/ijms19051355
  27. Al Bitar S., Ballout F., Monzer A. et al. Thymoquinone Radiosensitizes Human Colorectal Cancer Cells in 2D and 3D Culture Models. Cancers. 2022; 14:1363. https://doi.org/10.3390/cancers14061363
  28. Chae I.G., Song N.Y., Kim D.H. et al. Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem. Toxicol. 2020;139:111253. doi: 10.1016/j.fct.2020.111253.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences