A component of the Nigella sativa plant as a radioprotector and antitumor drug
- Authors: Fomina D.V.1, Abdullaev S.A.1,2, Raeva N.F.1, Zasukhina G.D.1,3
-
Affiliations:
- State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Issue: Vol 64, No 4 (2024)
- Pages: 351-356
- Section: Molecular Radiobiology
- URL: https://jdigitaldiagnostics.com/0869-8031/article/view/661072
- DOI: https://doi.org/10.31857/S0869803124040029
- EDN: https://elibrary.ru/LOIVPH
- ID: 661072
Cite item
Abstract
To date, natural species are widely used as pharmaceutical agents for many human diseases. One of these is the seeds of Nigella sativa and its constituent thymoquinone (TQ). Being a biologically active compound, TQ has a variety of therapeutic properties, including antioxidant, anti-inflammatory, antitumor and a number of others. TQ is an absorber of free and superoxide radicals, therefore it is a promising natural radioprotector against the immunosuppressive and oxidative effects of ionizing radiation. The review presents data on the radioprotective properties of TQ and some mechanisms of its activity. In addition, TQ exhibits antitumor activity by inhibiting cell proliferation, migration and invasion. Despite the fact that TQ induces apoptosis by regulating the expression of pro-apoptotic and anti-apoptotic genes in many types of cancer, the mechanism of action of TQ in oncological diseases has not yet been fully studied. Thus, this review highlights the mechanisms of action of TQ as a promising radioprotector and as a future candidate for antitumor therapy.
Keywords
Full Text

About the authors
D. V. Fomina
State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
Author for correspondence.
Email: dasha_saleeva@inbox.ru
Russian Federation, Moscow
S. A. Abdullaev
State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: dasha_saleeva@inbox.ru
Russian Federation, Moscow; Pushchino
N. F. Raeva
State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
Email: dasha_saleeva@inbox.ru
Russian Federation, Moscow
G. D. Zasukhina
State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency; Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: dasha_saleeva@inbox.ru
Russian Federation, Moscow; Moscow
References
- Hago S., Lu T., Alzain A.A. et al. Phytochemical constituents, in-vitro anticancer activity and computational studies of Cymbopogon schoenanthus. Nat. Prot. Res. 2023;5:1-7. doi: 10.1080/14786419.2023.2208360.
- Almajali B., Al-Jamal H.A.N., Taib W.R.W. et al. Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals (Basel). 2021;14(4):369. doi: 10.3390/ph14040369
- Maideen N.M.P. Antidiabetic Activity of Nigella Sativa (Black Seeds) and Its Active Constituent (Thymoquinone): A Review of Human and Experimental Animal Studies. Chonnam. Med. J. 2021;57(3):169-175. doi: 10.4068/cmj.2021.57.3.169.
- Taysi S., Algburi F.S., Mohammed Z.R. et al. Thymoquinone: A Review on its Pharmacological Importance, and its Association with Oxidative Stress, COVID-19, and Radiotherapy. Mini Rev. Med. Chem. 2022;22(14):1847-1875. doi: 10.2174/1389557522666220104151225
- Abdelrahim M., Esmail A., Al Saadi N. et al. Thymoquinone’s Antiviral Effects: It is Time to be Proven in the Covid-19 Pandemic Era and its Omicron Variant Surge. Front Pharmacol. 2022;5(13):848676. doi: 10.3389/fphar.2022.848676
- Akyuz M., Taysi S., Baysal E. et al. Radioprotective effect of thymoquinone on salivary gland of rats exposed to total cranial irradiation. Head. Neck. 2017;39(10):2027-2035. doi: 10.1002/hed.24861.
- Demir E., Taysi S., Ulusal H. et al. Nigella sativa oil and thymoquinone reduce oxidative stress in the brain tissue of rats exposed to total head irradiation. Int. J. Radiat. Biol. 2020;96(2):228-235. doi: 10.1080/09553002.2020.1683636.
- Deniz C.D., Aktan M., Erel O. et al. Evaluation of the radioprotective effects of thymoquinone on dynamic thiol-disulphide homeostasis during total-body irradiation in rats. J. Radiat. Res. 2019;60(1):23-28. doi: 10.1093/jrr/rry083
- Goleva T.N., Rogov A.G., Korshunova G.A. et al. SkQThy, a novel and promising mitochondria-targeted antioxidant. Mitochondrion. 2019;49:206-216. doi: 10.1016/j.mito.2019.09.001.
- Chen H., Zhuo C., Zu A. et al. Thymoquinone ameliorates pressure overload-induced cardiac hypertrophy by activating the AMPK signalling pathway. J. Cell Mol. Med. 2022;26(3):855-867. doi: 10.1111/jcmm.17138.
- Dera A.A., Al Fayi M., Otifi H. et al. Rajagopalan P. Thymoquinone (Tq) protects necroptosis induced by autophagy/mitophagy-dependent oxidative stress in human bronchial epithelial cells exposed to cigarette smoke extract (CSE). J. Food Biochem. 2020;44(9):e13366. doi: 10.1111/jfbc.13366.
- Moshafi M.H., Torabizadeh S.A., Mohamadnezhad F. et al. Ferulago angulata as a Good Radioprotector Against Genotoxicity. Curr. Radiopharm. 2022;15(2):110-116. doi: 10.2174/1874471014666210426111806
- ОНКО-ONCO: ОНКОЛОГИЧЕСКИЕ ЗАБОЛЕВАНИЯ В РОССИИ И МИРЕ / “Мониторинго-экспертные исследования: знать и победить рак”. Вып. 55. Научн. рук. З.А. Саидова / Гл. ред. Комарова А.И. Т. 846(888). М., 2022. [ONKO-ONCO: ONKOLOGICHESKIE ZABOLEVANIYA V ROSSII I MIRE / “Monitoringo-ekspertnye issledovaniya: znat’ i pobedit’ rak”. Vyp. 55. Nauchn. ruk. Z.A. Saidova / Gl. red. Komarova A.I. Tom 846(888). M., 2022. (In Russ.)]
- Zhong T., Zhang W., Guo H. et al. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm. Sin. B. 2022;12(4):1761-1780. doi: 10.1016/j.apsb.2021.11.001
- Adinew G.M., Messeha S.S., Taka E. et al. Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells. Nutrients. 2022;14(22):4787. doi: 10.3390/nu14224787.
- Hamaamin K.S., Marouf B.H. Chemopreventive Efficacy of Thymoquinone in Chemically Induced Urinary Bladder Carcinogenesis in Rat. Biomed. Res. Int. 2022; 2022:6276768. doi: 10.1155/2022/6276768.
- Soltanfar A., Meimandi Parizi A., Foad-Noorbakhsh M. et al. The healing effects of thymoquinone on experimentally induced traumatic tendinopathy in rabbits. J. Orthop. Surg. Res. 2023;18(1):233. doi: 10.1186/s13018-023-03706-8.
- Zhao Z., Liu L., Li S.et al. Advances in research on the relationship between thymoquinone and pancreatic cancer. Front. Oncol. 2023;12:1092020. doi: 10.3389/fonc.2022.1092020
- Mizuno M., Fukuhara K. Antioxidant and Prooxidant Effects of Thymoquinone and Its Hydroquinone Metabolite. Biol. Pharm. Bull. 2022;45(9):1389-1393. doi: 10.1248/bpb.b22-00199
- Mollazadeh H., Afshari A.R., Hosseinzadeh H. Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis: — Black cumin and cancer. J. Pharmacopuncture. 2017;20(3):158-172. doi: 10.3831/KPI.2017.20.019
- Dastjerdi M.N., Mehdiabady E.M., Iranpour F.G. et al. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line. Int. J. Prev. Med. 2016;7:66. doi: 10.4103/2008-7802.180412
- Zhang H., Zhang Z., Gao L. et al. miR-1-3p suppresses proliferation of hepatocellular carcinoma through targeting SOX9. OncoTargets Ther. 2019;12:2149–2157. doi: 10.2147/OTT.S197326
- Tadros S.A., Attia Y.M., Maurice N.W. et al.Thymoquinone Suppresses Angiogenesis in DEN-Induced Hepatocellular Carcinoma by Targeting miR-1-3p. Int. J. Mol. Sci. 2022;23(24):15904. doi: 10.3390/ijms232415904.
- Butt M.S., Imran M., Imran A. et al. Therapeutic perspective of thymoquinone: A mechanistic treatise. Food Sci. Nutr. 2021;9(3):1792-1809. doi: 10.1002/fsn3.2070
- Karimi Z., Mirza Alizadeh A. et al. Nigella sativaand its Derivatives as Food Toxicity Protectant Agents. Adv. Pharm. Bull. 2019;9(1):22-37. doi: 10.15171/apb.2019.004.
- Aziz N., Son Y.J., Cho J.Y. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1. Int. J. Mol. Sci. 2018;19(5):1355. doi: 10.3390/ijms19051355
- Al Bitar S., Ballout F., Monzer A. et al. Thymoquinone Radiosensitizes Human Colorectal Cancer Cells in 2D and 3D Culture Models. Cancers. 2022; 14:1363. https://doi.org/10.3390/cancers14061363
- Chae I.G., Song N.Y., Kim D.H. et al. Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem. Toxicol. 2020;139:111253. doi: 10.1016/j.fct.2020.111253.
Supplementary files
