Radiation dermatitis: the development of the problem
- Authors: Sorokina S.S.1, Karmanova E.E.1, Anikina V.A.1, Popova N.R.1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Issue: Vol 64, No 1 (2024)
- Pages: 30-48
- Section: General Radiobiology
- URL: https://jdigitaldiagnostics.com/0869-8031/article/view/661100
- DOI: https://doi.org/10.31857/S0869803124010045
- EDN: https://elibrary.ru/NNRSPP
- ID: 661100
Cite item
Abstract
According to the clinical assessment, 85–95% of patients undergoing standard radiation therapy develop such a side effect of radiation dermatitis (RD). Currently, the study of the problem of RD moves away from the classification of the main symptoms towards the development of high-tech methods of diagnosis and treatment, which are associated with the use of bioactive substances of different nature, targeted and cellular therapy, and also nanotechnology. However, there is currently no worldwide standard treatment for RD. This review presents a retrospective of the formation and development of this problem, the current state and possible ways of further development of studies.
Full Text

About the authors
Svetlana S. Sorokina
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Author for correspondence.
Email: sorokinasvetlana.iteb@gmail.com
ORCID iD: 0000-0003-4787-4541
Russian Federation, Pushchino
Ekaterina E. Karmanova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: silisti@bk.ru
ORCID iD: 0000-0001-8806-8664
Russian Federation, Pushchino
Viktoriia A. Anikina
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: viktoriya.anikina@list.ru
ORCID iD: 0000-0002-5028-2064
Russian Federation, Pushchino
Nelli R. Popova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: nellipopovaran@gmail.com
ORCID iD: 0000-0002-0982-6349
Russian Federation, Pushchino
References
- Hellman S., Weichselbaum R.R. Radiation oncology. JAMA. 1996;275(23):1852-1853.
- Reddy S., Vijayakumar S. Evaluating clinical skills of radiation oncology residents: parts I and II. Int. J. Cancer. 2000;90(1):1-12. doi: 10.1002/(sici)1097-0215(20000220)90:1<1::aid-ijc1>3.0.co;2-w
- Durante M., Loeffler J.S. Charged particles in radiation oncology. Nat. Rev. Clin. Oncol. 2010;7(1):37-43. doi: 10.1038/nrclinonc.2009.183
- Vozenin M.C., Bourhis J., Durante M. Towards clinical translation of FLASH radiotherapy. Nat. Rev. Clin. Oncol. 2022;19(12):791-803. doi: 10.1038/s41571-022-00697-z
- Maddocks-Jennings W., Wilkinson J.M., Shillington D. Novel approaches to radiotherapy-induced skin reactions: a literature review. Complement Ther. Clin. Pract. 2005;11(4):224-231. doi: 10.1016/j.ctcp.2005.02.001
- Salvo N., Barnes E., van Draanen J. et al. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr. Oncol. 2010;17(4):94-112. doi: 10.3747/co.v17i4.493
- Ryan J.L., Ling M., Williams J.P. et al. Curcumin intervention and plasma biomarkers for radiation dermatitis in breast cancer patients. J. Invest. Dermatol. 2011;131:S90.
- Hille-Betz U., Vaske B., Bremer M. et al. Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy: Risk-modifying factors. Strahlenther Onkol. 2016;192(1):8-16. doi: 10.1007/s00066-015-0899-y
- Horgan J.H. Malignancy and dermatitis. Br. Med. J. 1970;4(5726):55. doi: 10.1136/bmj.4.5726.55-b
- Leventhal J., Young M.R. Radiation dermatitis: recognition, prevention, and management. Oncology (Williston Park). 2017;31(12):885-899.
- Feight D., Baney T., Bruce S., McQuestion M. Putting evidence into practice. Clin. J. Oncol. Nurs. 2011;15(5):481-492. doi: 10.1188/11.CJON.481-492
- Siegel R., DeSantis C., Virgo K. et al. Cancer treatment and survivorship statistics, 2012 [published correction appears in CA Cancer J Clin. 2012 Sep-Oct;62(5):348]. CA Cancer J. Clin. 2012;62(4):220-241. doi: 10.3322/caac.21149
- Von Essen C.F. Radiation tolerance of the skin. Acta Radiol. Ther. Phys. Biol. 1969;8(4):311-330. doi: 10.3109/02841866909134462
- Bourgeois J.F., Gourgou S., Kramar A., Lagarde J.M., Gall Y., Guillot B. Radiation-induced skin fibrosis after treatment of breast cancer: profilometric analysis. Skin. Res. Technol. 2003;9(1):39-42. doi: 10.1034/j.1600-0846.2003.00357.x
- Agishev T.T., Topuzov E.E., Krasnozhon D.A. et al. Determination of oxygen perfusion in the area of radiation-induced fibrosis of the skin in patients with breast cancer and its role in pathogenesis of late radiation injury. Exp/ Oncol. 2018;40(3):235-238.
- Jaschke W., Schmuth M., Trianni A., Bartal G. Radiation-Induced Skin injuries to patients: what the interventional radiologist needs to know. Cardiovasc. Intervent. Radiol. 2017;40(8):1131-1140. doi: 10.1007/s00270-017-1674-5
- Geara F.B., Eid T., Zouain N. et al. Randomized, Prospective, Open-label phase III trial comparing mebo ointment with biafine cream for the management of acute dermatitis during radiotherapy for breast cancer. Am. J. Clin. Oncol. 2018;41(12):1257-1262. doi: 10.1097/COC.0000000000000460
- Баюров Л.И. Радиобиология: Учебное пособие. Краснодар: КубГАУ, 2008. 331 с. [Bajurov L.I. Radiobiologija: uchebnoe posobie = Radiobiology: Textbook. Krasnodar: KubGAU, 2008. 331 p. (In Russ.)]
- Кижаев Е.В. Хирургическое лечение лучевых язв, подвергшихся малигнизации. Мед. радиология. 1971;16(6):48–52. [Kizhaev E.V. Hirurgicheskoe lechenie luchevyh jazv, podvergshihsja malignizacii = Surgical treatment of radiation ulcers that have undergone malignancy. Med. radiologiya. 1971;16(6):48–52. (In Russ.)]
- Лампсаков П.П. Случай канкроида кожи после продолжительного действия рентгеновых лучей. В сб.: Труды первого Всероссийского съезда по борьбе с раковыми заболеваниями. СПб., 1914. С. 135–137. [Lampsakov P.P. Sluchaj kankroida kozhi posle prodolzhitel‘nogo dejstvija rentgenovyh luchej = A case of skin cancroid after prolonged exposure to X-rays. In: Trudy pervogo Vserossijskogo s“ezda po bor‘be s rakovymi zabolevaniyami. SPb., 1914. P. 135–137. (In Russ.)]
- ICRP: International recommendations on radiological protection. Revised by the International Commission on Radiological Protection at the Sixth International Congress of Radiology. Br. J. Radiol. 1950; 24:46–53.
- Mettler F.A. and Upton A.C. Medical effects of ionizing radiation, 3rd ed. AJNR Am. J. Neuroradiol. 2009;30(2):e30. doi: 10.3174/ajnr.A1289
- Goldschmidt H., Sherwin W.K. Reactions to ionizing radiation. J. Am. Acad. Dermatol. 1980;3(6):551-579. doi: 10.1016/s0190-9622(80)80067-3
- Kupper T.S., Fuhlbrigge R.C. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 2004;4(3):211-222. doi: 10.1038/nri1310
- Ratliff C. Impaired skin integrity related to radiation therapy. J. Enterostomal. Ther. 1990;17(5):193-198.
- Trott K. and Kummermehr J. Radiation effects in skin. In: Scherer E., Streffer C., Trott K., eds. Radiopathology of organs and tissues. Springer-Verlag., 1991. P. 33–66.
- Huda W., Peters K.R. Radiation-induced temporary epilation after a neuroradiologically guided embolization procedure. Radiology. 1994;193(3):642-644. doi: 10.1148/radiology.193.3.7972801
- Korinko A., Yurick A. Maintaining skin integrity during radiation therapy. Am. J. Nurs. 1997;97(2):40-44.
- Potten C.S. Radiation and skin. Taylor & Francis, 1985. P. 237.
- Prasad K.N. Handbook of radiobiology. 2nd ed. Boca Raton, FL: CRC Press, 1995. P. 153–160.
- Mendelsohn F.A., Divino C.M., Reis E.D., Kerstein M.D. Wound care after radiation therapy. Adv. Skin Wound. Care. 2002;15(5):216-224. doi: 10.1097/00129334-200209000-00007
- Rosenthal L.S., Beck T.J., Williams J. et al. Acute radiation dermatitis following radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia. Pacing Clin. Electrophysiol. 1997;20(7):1834-1839. doi: 10.1111/j.1540-8159.1997.tb03574.x
- Panizzon R.G. and Goldschmidt H. Radiation reactions and sequelae. In: Goldschmidt H., Panizzon R.G., eds. Modern dermatologic radiation therapy. New York: Springer-Verlag., 1991. P. 25–36. https://doi.org/10.1007/978-1-4613-9041-1_3
- Hopewell J.W. The skin: its structure and response to ionizing radiation. Int J. Radiat. Biol. 1990;57(4):751-773. doi: 10.1080/09553009014550911
- Task Group on Radiation Quality Effects in Radiological Protection, Committee 1 on Radiation Effects, International Commission on Radiological Protection. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (w(R)). A report of the International Commission on Radiological Protection. Ann. ICRP. 2003;33(4):1-117. doi: 10.1016/s0146-6453(03)00024-1
- Koenig T.R., Wolff D., Mettler F.A., Wagner L.K. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am. J. Roentgenol. 2001;177(1):3-11. doi: 10.2214/ajr.177.1.1770003
- Peter R.U. Cutaneous radiation syndrome in multi-organ failure. BJR Suppl. 2005;27:180-184.
- Balter S., Hopewell J.W., Miller D.L. et al. Fluoroscopically guided interventional procedures: a review of radiation effects on patients‘ skin and hair. Radiology. 2010;254(2):326-341. doi: 10.1148/radiol.2542082312
- Turesson I., Notter G. The predictive value of skin telangiectasia for late radiation effects in different normal tissues. Int. J. Radiat. Oncol. Biol. Phys. 1986;12(4):603-609. doi: 10.1016/0360-3016(86)90069-6
- International Commission on Radiological Protection. The biological basis for dose limitation in the skin. ICRP Publication 59. Oxford, England: Pergumon. 1992.
- Van der Kogel A.J. Radiation response and tolerance of normal tissues. In: Gorden Steel G, editor. Basic clinical radiobiology. 3rd ed., Arnold Publisher, 2002. P. 33–34.
- Lichtenstein D.A., Klapholz L., Vardy D.A. et al. Chronic radiodermatitis following cardiac catheterization. Arch. Dermatol. 1996;132(6):663-667.
- Søvik E., Kløw N.E., Hellesnes J., Lykke J. Radiation-induced skin injury after percutaneous transluminal coronary angioplasty. Case report. Acta Radiol. 1996;37(3 Pt 1):305-306. doi: 10.1177/02841851960371P164
- Peel D.M., Hopewell J.W., Wells J., Charles M.W. Nonstochastic effects of different energy beta emitters on pig skin. Radiat. Res. 1984;99(2):372-382.
- Kim J.S., Rhim K.J., Jang W.S. et al. β-irradiation (¹⁶⁶Ho patch)-induced skin injury in mini-pigs: effects on NF-κB and COX-2 expression in the skin. J. Vet. Sci. 2015;16(1):1-9. doi: 10.4142/jvs.2015.16.1.1
- Archambeau J.O., Pezner R., Wasserman T. Pathophysiology of irradiated skin and breast. Int. J. Radiat. Oncol. Biol. Phys. 1995;31(5):1171-1185. doi: 10.1016/0360-3016(94)00423-I
- Bese N.S., Umay C., Yildirim S. et al. The effects of tamoxifen on radiation-induced pulmonary fibrosis in Wistar albino rats: results of an experimental study. Breast. 2006;15(3):456-460. doi: 10.1016/j.breast.2005.04.016
- Koc M. What is the impact of tamoxifen on radiation-induced fibrosis in patients receiving breast-conserving therapy. J. Clin. Oncol. 2007;25(36):5841-5845. doi: 10.1200/JCO.2007.14.6910
- Herold D.M., Hanlon A.L., Hanks G.E. Diabetes mellitus: a predictor for late radiation morbidity. Int. J. Radiat. Oncol. Biol. Phys. 1999;43(3):475-479. doi: 10.1016/s0360-3016(98)00460-x
- Wagner L.K., McNeese M.D., Marx M.V., Siegel E.L. Severe skin reactions from interventional fluoroscopy: case report and review of the literature. Radiology. 1999;213(3):773-776. doi: 10.1148/radiology.213.3.r99dc16773
- Vano E., Goicolea J., Galvan C. et al. Skin radiation injuries in patients following repeated coronary angioplasty procedures. Br. J. Radiol. 2001;74(887):1023-1031. doi: 10.1259/bjr.74.887.741023
- Mettler F.A. Jr., Koenig T.R., Wagner L.K., Kelsey CA. Radiation injuries after fluoroscopic procedures. Semin. Ultrasound. CT MR. 2002;23(5):428-442. doi: 10.1016/s0887-2171(02)90014-4
- Archambeau J.O. Relative radiation sensitivity of the integumentary system: dose response of the epidermal, microvascular and dermal populations. In: Lett J., Altam K., eds. Advances in radiation biology, 1987. V. 12. San Diego: Academic press. P. 147–203.
- Denham J.W., Hauer-Jensen M. The radiotherapeutic injury- a complex ‚wound‘. Radiother. Oncol. 2002;63(2):129-145. doi: 10.1016/s0167-8140(02)00060-9
- Dutreix J. Human skin: early and late reactions in relation to dose and its time distribution. Br. J. Radiol. Suppl. 1986;19:22-28.
- McCullough M.L. Sclerosing dermatoses. In: Farmer E.R., Hood AF, eds. Pathology of the skin, 2nd ed. New York: McGraw-Hill, 1999: 441–445. doi.org/10.2214/ajr.177..1.1770003
- Merrick A., Errington F., Milward K. et al. Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br. J. Cancer. 2005;92(8):1450-1458. doi: 10.1038/sj.bjc.6602518
- Nikulin A.A. and Krylova E.A. Comparative evaluation of the treatment of radiation skin injuries with oxycort ointment and Peruvian balsam. Farmakol. Toksikol. 1980;43:97–100.
- Merad M., Manz M.G., Karsunky H. et al. Langerhans cells renew in the skin throughout life under steady-state conditions [published correction appears in Nat. Immunol. 2003 Jan;4(1):92]. Nat. Immunol. 2002;3(12):1135-1141. doi: 10.1038/ni852
- Takashima A., Bergstresser P.R. Cytokine-mediated communication by keratinocytes and Langerhans cells with dendritic epidermal T cells. Semin. Immunol. 1996;8(6):333-339. doi: 10.1006/smim.1996.0044
- Gottlöber P., Krähn G., Peter R.U. Das kutane Strahlensyndrom. Klinik, Diagnostik und Therapie [Cutaneous radiation syndrome: clinical features, diagnosis and therapy]. Hautarzt. 2000;51(8):567-574. doi: 10.1007/s001050051173
- Müller K., Meineke V. Radiation-induced alterations in cytokine production by skin cells. Exp. Hematol. 2007;35(4 Suppl 1):96-104. doi: 10.1016/j.exphem.2007.01.017
- Kalesnikoff J., Galli S.J. New developments in mast cell biology. Nat. Immunol. 2008;9(11):1215-1223. doi: 10.1038/ni.f.216
- Tripp C.S., Blomme E.A., Chinn K.S. et al. Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection. J. Invest. Dermatol. 2003;121(4):853-861. doi: 10.1046/j.1523-1747.2003.12495.x
- Yeoh A.S., Bowen J.M., Gibson R.J., Keefe D.M. Nuclear factor kappaB (NFkappaB) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes. Int. J. Radiat. Oncol. Biol. Phys. 2005;63(5):1295-1303. doi: 10.1016/j.ijrobp.2005.04.041
- McQuestion M. Evidence-based skin care management in radiation therapy. Semin. Oncol. Nurs. 2006;22(3):163-173. doi: 10.1016/j.soncn.2006.04.004
- Hopewell J.W. Mechanisms of the action of radiation on skin and underlying tissues. Br. J. Radiol. Suppl. 1986;19:39-47.
- LeBoit P.E. Subacute radiation dermatitis: a histologic imitator of acute cutaneous graft-versus-host disease. J. Am. Acad. Dermatol. 1989;20(2 Pt 1):236-241. doi: 10.1016/s0190-9622(89)70028-1
- Boncher J., Bergfeld W.F. Fluoroscopy-induced chronic radiation dermatitis: a report of two additional cases and a brief review of the literature. J. Cutan. Pathol. 2012;39(1):63-67. doi: 10.1111/j.1600-0560.2011.01754.x
- D‘incan M., Roger H., Gabrillargues J. et al. Alopécie transitoire d‘origine radique après embolisation artérielle cérébrale: 6 cas [Radiation-induced temporary hair loss after endovascular embolization of the cerebral arteries: six cases]. Ann. Dermatol. Venereol. 2002;129(5 Pt 1):703-706.
- Stone M.S., Robson K.J., LeBoit P.E. Subacute radiation dermatitis from fluoroscopy during coronary artery stenting: evidence for cytotoxic lymphocyte mediated apoptosis. J. Am. Acad. Dermatol. 1998;38(2 Pt 2):333-336. doi: 10.1016/s0190-9622(98)70577-8
- Lee J., Hoss D., Phillips T.J. Fluoroscopy-induced skin necrosis. Arch. Dermatol. 2003;139(2):140-142. doi: 10.1001/archderm.139.2.140
- Dandurand M., Huet P., Guillot B. Radiodermites secondaires aux explorations endovasculaires: 5 observations [Secondary radiodermatitis caused by endovascular explorations: 5 cases]. Ann. Dermatol. Venereol. 1999;126(5):413-417.
- Frazier T.H., Richardson J.B., Fabré V.C., Callen J.P. Fluoroscopy-induced chronic radiation skin injury: a disease perhaps often overlooked. Arch. Dermatol. 2007;143(5):637-640. doi: 10.1001/archderm.143.5.637
- Jeskowiak A., Hubmer M., Prenner G., Maechler H. Radiation induced cutaneous ulcer on the back in a patient with congenital anomaly of the upper cava system. Interact Cardiovasc. Thorac. Surg. 2011;12(2):290-292. doi: 10.1510/icvts.2010.247395
- Malkinson F.D., Keane J.T. Radiobiology of the skin: review of some effects on epidermis and hair. J. Invest. Dermatol. 1981;77(1):133-138. doi: 10.1111/1523-1747.ep12479347
- Steinert M., Weiss M., Gottlöber P. et al. Delayed effects of accidental cutaneous radiation exposure: fifteen years of follow-up after the Chernobyl accident. J. Am. Acad. Dermatol. 2003;49(3):417-423. doi: 10.1067/s0190-9622(03)02088-7
- Elias P.M., Feingold K.R. Does the tail wag the dog? Role of the barrier in the pathogenesis of inflammatory dermatoses and therapeutic implications. Arch. Dermatol. 2001;137(8):1079-1081.
- Borzuchowska A. Doświadczalna salmoneloza w warunkach napromieniowania [Experimental Salmonella infection under the effect of ionizing radiation]. Rocz. Akad. Med. Im. Juliana Marchlewskiego Bialymst. 1979(24). P. 5-52
- Altoparlak U., Koca O., Koca T. Incidence and risk factors of the secondary skin infections in patients with radiodermatitis. Eurasian J. Med. 2011;43(3):177-181. doi: 10.5152/eajm.2011.34
- ФКР ФМБА России. Диагностика, лечение местных лучевых поражений и их отдаленных последствий. Федеральные клинические рекомендации. М., 2015. 62 с. [FKR FMBA Rossii. Diagnostika, lechenie mestnyh luchevyh porazhenij i ih otdaljonnyh posledstvij = Diagnosis, treatment of local radiation injuries and their longterm consequences. Federal’nye klinicheskie rekomendacii. M., 2015. 62s. (In Russ.)]
- Clairand I., Trompier F., Bottollier-Depois J.F., Gourmelon P. EX vivo ESR measurements associated with Monte Carlo calculations for accident dosimetry: application to the 2001 Georgian accident. Radiat. Prot. Dosim. 2006;119(1-4):500-505. doi: 10.1093/rpd/nci516
- Trompier F., Sadlo J., Michalik J. et al. EPR dosimetry for actual and suspected overexposures during radiotherapy treatments in Poland. Radiat. Meas. 2007;42:1025–1028. doi: 10.1016/j.radmeas.2007.05.005
- Jones I.M., Tucker J.D., Langlois R.G. et al. Evaluation of three somatic genetic biomarkers as indicators of low dose radiation effects in clean-up workers of the Chernobyl nuclear reactor accident. Radiat. Prot. Dosim. 2001;97(1):61-67. doi: 10.1093/oxfordjournals.rpd.a006639
- Ward J.F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic. Acid. Res. Mol. Biol. 1988;35:95-125. doi: 10.1016/s0079-6603(08)60611-x
- Belli M., Sapora O., Tabocchini M.A. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J. Radiat. Res. 2002;43 Suppl:S13-S19. doi: 10.1269/jrr.43.s13
- Harper J.L., Franklin L.E., Jenrette J.M., Aguero E.G. Skin toxicity during breast irradiation: pathophysiology and management. South. Med. J. 2004;97(10):989-993. doi: 10.1097/01.SMJ.0000140866.97278.87
- Shack R.B., Lynch J.B. Radiation dermatitis. Clin. Plast. Surg. 1987;14(2):391-401.
- Schmuth M., Wimmer M.A., Hofer S. et al. Topical corticosteroid therapy for acute radiation dermatitis: a prospective, randomized, double-blind study. Br. J. Dermatol. 2002;146(6):983-991. https://doi: 10.1046/j.1365-2133.2002.04751.x
- Shukla P.N., Gairola M., Mohanti B.K., Rath G.K. Prophylactic beclomethasone spray to the skin during postoperative radiotherapy of carcinoma breast: a prospective randomized study. Indian. J. Cancer. 2006;43(4):180-184. https://doi: 10.4103/0019-509x.29424
- Williams M.S., Burk M., Loprinzi C.L. et al. Phase III double-blind evaluation of an aloe vera gel as a prophylactic agent for radiation-induced skin toxicity. Int. J. Radiat. Oncol. Biol. Phys. 1996;36(2):345-349. https://doi: 10.1016/s0360-3016(96)00320-3
- Liguori V., Guillemin C., Pesce G.F. et al. Double-blind, randomized clinical study comparing hyaluronic acid cream to placebo in patients treated with radiotherapy. Radiother. Oncol. 1997;42(2):155-161. https://doi: 10.1016/s0167-8140(96)01882-8
- Graham P., Browne L., Capp A. et al. Randomized, paired comparison of No-Sting Barrier Film versus sorbolene cream (10% glycerine) skin care during postmastectomy irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2004;58(1):241-246. https://doi: 10.1016/s0360-3016(03)01431-7
- Maddocks-Jennings W., Wilkinson J.M., Shillington D. Novel approaches to radiotherapy-induced skin reactions: a literature review. Complement Ther. Clin .Pract. 2005;11(4):224-231. doi: 10.1016/j.ctcp.2005.02.001
- Wells M., Macmillan M., Raab G. et al. Does aqueous or sucralfate cream affect the severity of erythematous radiation skin reactions? A randomised controlled trial. Radiother. Oncol. 2004;73(2):153-162. doi: 10.1016/j.radonc.2004.07.032
- Kao J.S., Fluhr J.W., Man M.Q. et al. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J. Invest .Dermatol. 2003;120(3):456-464. doi: 10.1046/j.1523-1747.2003.12053.x
- Choi E.H., Brown B.E., Crumrine D. et al. Mechanisms by which psychologic stress alters cutaneous permeability barrier homeostasis and stratum corneum integrity. J. Invest Dermatol. 2005;124(3):587-595. https://doi: 10.1111/j.0022-202X.2005.23589.x
- Röper B., Kaisig D., Auer F., Mergen E., Molls M. Thêta-Cream versus Bepanthol lotion in breast cancer patients under radiotherapy. A new prophylactic agent in skin care? Strahlenther. Onkol. 2004;180(5):315-322. https://doi: 10.1007/s00066-004-1174-9
- Chiao T.B., Lee A.J. Role of pentoxifylline and vitamin E in attenuation of radiation-induced fibrosis. Ann. Pharmacother. 2005;39(3):516-522. doi: 10.1345/aph.1E186
- Dirier A., Akmansu M., Bora H., Gurer M. The effect of vitamin E on acute skin reaction caused by radiotherapy. Clin. Exp. Dermatol. 2007;32(5):571-573. https://doi: 10.1111/j.1365-2230.2007.02452.x
- Delanian S., Balla-Mekias S., Lefaix J.L. Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J. Clin. Oncol. 1999;17(10):3283-3290. https://doi: 10.1200/JCO.1999.17.10.3283
- Manzanas García A., López Carrizosa M.C., Vallejo Ocaña C. et al. Superoxidase dismutase (SOD) topical use in oncologic patients: treatment of acute cutaneous toxicity secondary to radiotherapy. Clin. Transl. Oncol. 2008;10(3):163-167. doi: 10.1007/s12094-008-0174-0
- Doctrow S.R., Huffman K., Marcus C.B. et al. Salen-manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. Adv. Pharmacol. 1997;38:247-269. https://doi: 10.1016/s1054-3589(08)60987-4
- Young C.N., Koepke J.I., Terlecky L.J. et al. Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease [published correction appears in J Invest Dermatol. 2009 Jul;129(7):1838. Boyd, Savoy L [corrected to Boyd Savoy, L]]. J. Invest. Dermatol. 2008;128(11):2606-2614. https://doi: 10.1038/jid.2008.122
- Rosenthal R.A., Fish B., Hill R.P. et al. Salen Mn complexes mitigate radiation injury in normal tissues. Anticancer Agents Med. Chem. 2011;11(4):359-372. https://doi: 10.2174/187152011795677490
- Dunst J., Semlin S., Pigorsch S. et al. Intermittent use of amifostine during postoperative radiochemotherapy and acute toxicity in rectal cancer patients. Strahlenther. Onkol. 2000;176(9):416-421. https://doi: 10.1007/pl00002350
- Okunieff P., Xu J., Hu D. et al. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int. J. Radiat. Oncol. Biol. Phys. 2006;65(3):890-898. https://doi: 10.1016/j.ijrobp.2006.03.025
- Dale P.S., Tamhankar C.P., George D., Daftary G.V. Co-medication with hydrolytic enzymes in radiation therapy of uterine cervix: evidence of the reduction of acute side effects. Cancer Chemother. Pharmacol. 2001;47 Suppl:S29-S34. https://doi: 10.1007/s002800170006
- Gujral M.S., Patnaik P.M., Kaul R. et al. Efficacy of hydrolytic enzymes in preventing radiation therapy-induced side effects in patients with head and neck cancers. Cancer Chemother. Pharmacol. 2001;47. Suppl:S23-S28. https://doi: 10.1007/s002800170005
- Ryan J.L. Ionizing radiation: the good, the bad, and the ugly. J Invest. Dermatol. 2012;132(3 Pt 2):985-993. doi: 10.1038/jid.2011.411
- Müller K., Meineke V. Radiation-induced mast cell mediators differentially modulate chemokine release from dermal fibroblasts. J. Dermatol. Sci. 2011;61(3):199-205. https://doi: 10.1016/j.jdermsci.2011.01.003
- Morgan K. Radiotherapy-induced skin reactions: prevention and cure. Br. J. Nurs. 2014;23(16):S24-S32. doi: 10.12968/bjon.2014.23.Sup16.S24
- Chan R.J., Larsen E., Chan P. Re-examining the evidence in radiation dermatitis management literature: an overview and a critical appraisal of systematic reviews. Int. J. Radiat. Oncol. Biol. Phys. 2012;84(3):e357-e362. https://doi: 10.1016/j.ijrobp.2012.05.009
- Chan R.J., Webster J., Chung B. et al. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 2014;14:53. https://doi: 10.1186/1471-2407-14-53
- Hindley A., Zain Z., Wood L. et al. Mometasone furoate cream reduces acute radiation dermatitis in patients receiving breast radiation therapy: results of a randomized trial [published correction appears in Int J Radiat Oncol Biol Phys. 2015 Mar 15;91(4):882. doi: 10.1016/j.ijrobp.2014.11.001]. Int. J. Radiat. Oncol. Biol. Phys. 2014;90(4):748-755. https://doi: 10.1016/j.ijrobp.2014.06.033
- De Langhe S., Mulliez T., Veldeman L. et al. Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy. BMC Cancer. 2014;14:711. https://doi: 10.1186/1471-2407-14-711
- Radvansky L.J., Pace M.B., Siddiqui A. Prevention and management of radiation-induced dermatitis, mucositis, and xerostomia. Am. J. Health Syst. Pharm. 2013;70(12):1025-1032. https://doi: 10.2146/ajhp120467
- Waghmare C.M. Radiation burn--from mechanism to management. Burns. 2013;39(2):212-219. https://doi: 10.1016/j.burns.2012.09.012
- Wei K.C., Yang K.C., Mar G.Y. et al. STROBEb – Radiation Ulcer: An Overlooked Complication of Fluoroscopic Intervention: A Cross-Sectional Study. Medicine (Baltimore). 2015;94(48):e2178. https://doi: 10.1097/MD.0000000000002178
- Hamada N., Fujimichi Y. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects. J. Radiat. Res. 2014;55(4):629-640. https://doi: 10.1093/jrr/rru019
- National Center for Environmental Health (NCEH). Agency for Toxic Substances and Disease Registry (ATSDR) NCfIPaCN. Cutaneous radiation injury. Fact sheet for physicians. 2005.
- Singh M., Alavi A., Wong R., Akita S. Radiodermatitis: A Review of Our Current Understanding. Am. J. Clin. Dermatol. 2016;17(3):277-292. https://doi: 10.1007/s40257-016-0186-4
- Bey E., Prat M., Duhamel P. et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound, Repair. Regen. 2010;18(1):50-58. https://doi: 10.1111/j.1524-475X.2009.00562.x
- Wolbarst A.B., Wiley A.L. Jr., Nemhauser J.B. et al. Medical response to a major radiologic emergency: a primer for medical and public health practitioners. Radiology. 2010;254(3):660-677. doi: 10.1148/radiol.09090330
- Brown K.R., Rzucidlo E. Acute and chronic radiation injury [published correction appears in J. Vasc. Surg. 2012 Feb;55(2):627]. J. Vasc. Surg. 2011;53(1 Suppl):15S-21S. doi: 10.1016/j.jvs.2010.06.175
- Vano-Galvan S., Fernandez-Lizarbe E., Truchuelo M. et al. Dynamic skin changes of acute radiation dermatitis revealed by in vivo reflectance confocal microscopy. J. Eur. Acad. Dermatol. Venereol. 2013;27(9):1143-1150. doi: 10.1111/j.1468-3083.2012.04680.x
- Glover D., Harmer V. Radiotherapy-induced skin reactions: assessment and management. Br. J. Nurs. 2014;23(4):S28-S35. doi: 10.12968/bjon.2014.23.Sup2.S28
- Hu S.C., Hou M.F., Luo K.H. et al. Changes in biophysical properties of the skin following radiotherapy for breast cancer. J. Dermatol. 2014;41(12):1087-1094. doi: 10.1111/1346-8138.12669
- Zhang S., Wang W., Gu Q. et al. Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation. Free Radic. Biol. Med. 2014;69:96-107. https://doi: 10.1016/j.freeradbiomed.2014.01.019
- Perez-Aso M., Mediero A., Low Y.C. et al. Adenosine A2A receptor plays an important role in radiation-induced dermal injury. FASEB J. 2016;30(1):457-465. https://doi: 10.1096/fj.15-280388
- Yu D., Li S., Wang S. et al. Development and characterization of VEGF165-Chitosan nanoparticles for the treatment of radiation-induced skin injury in rats. Mar. Drugs. 2016;14(10):182. https://doi: 10.3390/md14100182
- Wang Z., Chen Z., Jiang Z. et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat. Commun. 2019;10(1):2538. https://doi: 10.1038/s41467-019-10386-8
- Valinciute G., Weigel C., Veldwijk M.R. et al. BET-bromodomain inhibitors modulate epigenetic patterns at the diacylglycerol kinase alpha enhancer associated with radiation-induced fibrosis. Radiother. O. 2017;125(1):168-174. https://doi: 10.1016/j.radonc.2017.08.028ncol
- Kim J.H., Kolozsvary A.J., Jenrow K.A., Brown S.L. Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat .Biol. 2013;89(5):311-318. doi: 10.3109/09553002.2013.765055
- Kim J.M., Yoo H., Kim J.Y. et al. Metformin Alleviates Radiation-Induced Skin Fibrosis via the Downregulation of FOXO3. Cell. Physiol Biochem. 2018;48(3):959-970. https://doi: 10.1159/000491964
- Amber K.T., Shiman M.I., Badiavas E.V. The use of antioxidants in radiotherapy-induced skin toxicity. Integr. Cancer Ther. 2014;13(1):38-45. https://doi: 10.1177/1534735413490235
- Kumar R., Griffin M, Adigbli G. et al. Lipotransfer for radiation-induced skin fibrosis. Br. J. Surg. 2016;103(8):950-961. https://doi: 10.1002/bjs.10180
- Qiu Y., Gao Y., Yu D. et al. Genome-wide analysis reveals zinc Transporter ZIP9 regulated by DNA methylation promotes radiation-induced skin fibrosis via the TGF-β signaling pathway. J. Invest. Dermatol. 2020;140(1):94-102.e7. doi: 10.1016/j.jid.2019.04.027
- Rajadhyaksha M., González S., Zavislan J.M. et al. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J. Invest. Dermatol. 1999;113(3):293-303. doi: 10.1046/j.1523-1747.1999.00690.x
- Pellacani G., Guitera P., Longo C. et al. The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions. J. Invest. Dermatol. 2007;127(12):2759-2765. doi: 10.1038/sj.jid.5700993
- Guitera P., Pellacani G., Longo C. et al. In vivo reflectance confocal microscopy enhances secondary evaluation of melanocytic lesions. J. Invest.Dermatol. 2009;129(1):131-138. doi: 10.1038/jid.2008.193
- Smesny S., Riemann S., Riehemann S. et al. Quantitative messung induzierter Hautrötungen durch optische reflexionsspektroskopie-methodik und klinische anwendung [Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application]. Biomed. Tech. (Berl). 2001;46(10):280-286. doi: 10.1515/bmte.2001.46.10.280
- Yohan D., Kim A., Korpela E. et al. Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy. Biomed. Opt. Express. 2014;5(5):1309-1320. doi: 10.1364/BOE.5.001309
- Amelink A., van der Ploeg, van den Heuvel A., de Wolf W.J. et al. Monitoring PDT by means of superficial reflectance spectroscopy. J. Photochem. Photobiol. B. 2005;79(3):243-251. doi: 10.1016/j.jphotobiol.2005.01.006
- Evers D.J., Hendriks B., Lucassen G., Ruers T. Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy. Future Oncol. 2012;8(3):307-320. doi: 10.2217/fon.12.15
- Kushner J. 4th, Kim D., So P.T. et al. Dual-channel two-photon microscopy study of transdermal transport in skin treated with low-frequency ultrasound and a chemical enhancer. J. Invest. Dermatol. 2007;127(12):2832-2846. https://doi: 10.1038/sj.jid.5700908
- Kabashima K., Egawa G. Intravital multiphoton imaging of cutaneous immune responses J. Invest. Dermatol. 2014;134(11):2680-2684. https://doi: 10.1038/jid.2014.225
- Paoli J., Smedh M., Wennberg A.M., Ericson M.B. Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J. Invest. Dermatol. 2008;128(5):1248-1255. https://doi: 10.1038/sj.jid.5701139
- Dimitrow E., Ziemer M., Koehler M.J. et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J. Invest. Dermatol. 2009;129(7):1752-1758. doi: 10.1038/jid.2008.439
- Jang W.H., Shim S., Wang T. et al. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy. Sci. Rep. 2016;6:19216. https://doi: 10.1038/srep19216
- MASCC 2013 Abstracts. Support Care Cancer. 2013; 21(Suppl 1):1–301.
- Shin S., Jang B.H., Suh H.S. et al. Effectiveness, safety, and economic evaluation of topical application of a herbal ointment, Jaungo, for radiation dermatitis after breast conserving surgery in patients with breast cancer (GREEN study): Study protocol for a randomized controlled trial. Medicine (Baltimore). 2019;98(15):e15174. https://doi: 10.1097/MD.0000000000015174
- Diggelmann K.V., Zytkovicz A.E., Tuaine J.M. et al. Mepilex Lite dressings for the management of radiation-induced erythema: a systematic inpatient controlled clinical trial. Br. J. Radiol. 2010;83(995):971-978. https://doi: 10.1259/bjr/62011713
- Anscher M.S. Targeting the TGF-beta1 pathway to prevent normal tissue injury after cancer therapy. Oncologist. 2010;15(4):350-359. https://doi: 10.1634/theoncologist.2009-S101
- Lee J.W., Tutela J.P., Zoumalan R.A. et al. Inhibition of Smad3 expression in radiation-induced fibrosis using a novel method for topical transcutaneous gene therapy. Arch. Otolaryngol. Head. Neck. Surg. 2010;136(7):714-719. https://doi: 10.1001/archoto.2010.107
- Cummings R.J., Mitra S., Foster T.H., Lord E.M. Migration of skin dendritic cells in response to ionizing radiation exposure. Radiat. Res. 2009;171(6):687-697. https://doi: 10.1667/RR1600.1
- Burdelya L.G., Krivokrysenko V.I., Tallant T.C. et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008;320(5873):226-230. https://doi: 10.1126/science.1154986
- Gudkov A.V., Komarova E.A. Radioprotection: smart games with death. J. Clin. Invest. 2010;120(7):2270-2273. https://doi: 10.1172/JCI43794
- Lee J., Jang H., Park S. et al. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. J. Transl Med. 2019;17(1):295. doi: 10.1186/s12967-019-2044-7
- Miller E.D, Song F., Smith J.D. et al. Plasma-based biomaterials for the treatment of cutaneous radiation injury. Wound. Repair. Regen. 2019;27(2):139-149. https://doi: 10.1111/wrr.12691
- Gerber S.A., Cummings R.J., Judge J.L. et al. Interleukin-12 preserves the cutaneous physical and immunological barrier after radiation exposure. Radiat. Res. 2015;183(1):72-81. doi: 10.1667/RR13802.1
- Kurow O., Frey B., Schuster L. et al. Full Length Interleukin 33 Aggravates Radiation-Induced Skin Reaction. Front. Immunol. 2017;8:722. https://doi: 10.3389/fimmu.2017.00722
- Gu Q., Feng T., Cao H. et al. HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation. Radiat. Oncol. 2013;8:253. https://doi: 10.1186/1748-717X-8-253
- Yücel S., Şahin B., Güral Z. et al. Impact of Superoxide Dismutase-Gliadin on Radiation-induced Fibrosis: An Experimental Study. In Vivo. 2016;30(4):451-456.
- Doctrow S.R., Lopez A., Schock A.M. et al. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin [published correction appears in J Invest Dermatol. 2013 Jun;133(6):1691]. J. Invest. Dermatol. 2013;133(4):1088-1096. https://doi: 10.1038/jid.2012.410
- Otterson M.F., Nie L., Schmidt J.L. et al. EUK-207 protects human intestinal microvascular endothelial cells (HIMEC) against irradiation-induced apoptosis through the Bcl2 pathway. Life Sci. 2012;91(15-16):771-782. https://doi: 10.1016/j.lfs.2012.08.018.
- Raber J., Davis M.J., Pfankuch T. et al. Mitigating effect of EUK-207 on radiation-induced cognitive impairments. Behav. Brain. Res. 2017;320:457-463. https://doi: 10.1016/j.bbr.2016.10.038
- Jeong M.H., Park Y.S., Jeong D.H. et al. In vitro evaluation of Cordyceps militaris as a potential radioprotective agent. Int. J. Mol. Med. 2014;34(5):1349-1357. https://doi: 10.3892/ijmm.2014.1901
- Watanabe S., Fujita M., Ishihara M. et al. Protective effect of inhalation of hydrogen gas on radiation-induced dermatitis and skin injury in rats. J. Radiat. Res. 2014;55(6):1107-1113. https://doi: 10.1093/jrr/rru067
- Borab Z., Mirmanesh M.D., Gantz M. et al. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. J. Plast. Reconstr. Aesthet. Surg. 2017;70(4):529-538. https://doi: 10.1016/j.bjps.2016.11.024
- Rácz E., Prens E.P. Phototherapy of psoriasis, a chronic inflammatory skin disease. Adv. Exp. Med. Biol. 2017;996:287-294. https://doi: 10.1007/978-3-319-56017-5_24
- Ortiz-Salvador J.M., Pérez-Ferriols A. Phototherapy in atopic dermatitis. Adv. Exp. Med. Biol. 2017;996:279-286. https://doi: 10.1007/978-3-319-56017-5_23
- Patrizi A., Raone B., Ravaioli G.M. Safety and efficacy of phototherapy in the management of eczema. Adv. Exp. Med. Biol. 2017;996:319-331. https://doi: 10.1007/978-3-319-56017-5_27
- Zhang P., Wu M.X. A clinical review of phototherapy for psoriasis. Lasers Med. Sci. 2018;33(1):173-180. doi: 10.1007/s10103-017-2360-1
- Kim W.S., Park B.S., Sung J.H. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin. Biol. Ther. 2009;9(7):879-887. https://doi: 10.1517/14712590903039684
- Akita S., Yoshimoto H., Ohtsuru A. et al. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries. Radiat. Prot. Dosim. 2012;151(4):656-660. https://doi: 10.1093/rpd/ncs176
- Akita S. Treatment of Radiation Injury. Adv. Wound Care (New Rochelle). 2014;3(1):1-11. doi: 10.1089/wound.2012.0403
- Xiao Y., Mo W., Jia H. et al. Ionizing radiation induces cutaneous lipid remolding and skin adipocytes confer protection against radiation-induced skin injury. J. Dermatol. Sci. 2020;97(2):152-160. https://doi: 10.1016/j.jdermsci.2020.01.009
- Zhang Y., Zhang S., Shao X. Topical agent therapy for prevention and treatment of radiodermatitis: a meta-analysis. Support Care Cancer. 2013;21(4):1025-1031. https://doi: 10.1007/s00520-012-1622-5
- Zhang X., Li H., Li Q. et al. Application of red light phototherapy in the treatment of radioactive dermatitis in patients with head and neck cancer. World J. Surg. Oncol. 2018;16(1):222. https://doi: 10.1186/s12957-018-1522-3
- Liao X., Xie G.H., Liu H.W. et al. Helium-neon laser irradiation promotes the proliferation and migration of human epidermal stem cells in vitro: proposed mechanism for enhanced wound re-epithelialization. Photomed. Laser Surg. 2014;32(4):219-225. https://doi: 10.1089/pho.2013.3667
- Kara N., Selamet H., Benkli Y.A et al. Laser therapy induces increased viability and proliferation in isolated fibroblast cells. Wounds. 2020;32(3):69-73.
- Sousa R.G., Batista Kde N. Laser therapy in wound healing associated with diabetes mellitus Review. An. Bras. Dermatol. 2016;91(4):489-493. https://doi: 10.1590/abd1806-4841.20163778
- Eissa M., Salih W.H.M. The influence of low-intensity He-Ne laser on the wound healing in diabetic rats. Lasers Med. Sci. 2017;32(6):1261-1267. https://doi: 10.1007/s10103-017-2230-x
- Popov A.L., Shcherbakov A.B., Zholobak N.M. et al. Cerium dioxide nanoparticles as third-generation enzymes (Nanozymes). Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):760–781.
- Zal Z., Ghasemi A., Azizi S. et al. Radioprotective effect of cerium oxide nanoparticles against genotoxicity induced by ionizing radiation on human lymphocytes. Curr. Radiopharm. 2018;11(2):109-115. https://doi: 10.2174/1874471011666180528095203
- Xu P.T., Maidment B.W. 3rd., Antonic V. et al. Cerium oxide nanoparticles: A potential medical countermeasure to mitigate radiation-induced lung injury in CBA/J Mice. Radiat. Res. 2016;185(5):516-526. doi: 10.1667/RR14261.1
- Popova N.R., Shekunova T.O., Popov A.L. et al. Cerium oxide nanoparticles provide radioprotective effects upon X-ray irradiation by modulation of gene expression. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(5):564–572.
- Wason M.S., Lu H., Yu L. et al. Cerium oxide nanoparticles sensitize pancreatic cancer to radiation therapy through oxidative activation of the JNK apoptotic pathway. Cancers (Basel). 2018;10(9):303. https://doi: 10.3390/cancers10090303
- Popova N.R., Andreeva V.V., Khohlov N.V. et al. Fabrication of CeO2 nanoparticles embedded in polysaccharide hydrogel and their application in skin wound healing. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):99–109.
- Popov A.L., Khohlov N.V., Popova N.R. et al. Composite cerium oxide nanoparticles - containing polysaccharide hydrogel as effective agent for burn wound healing. KEM. 2021;899:493–505.
- Moradi A., Kheirollahkhani Y., Fatahi P. et al. An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med. Sci. 2019;34(4):779-791. https://doi: 10.1007/s10103-018-2664-9
- Talakesh T., Tabatabaee N., Atoof F. et al. Effect of nano-curcumin on radiotherapy-induced skin reaction in breast cancer patients: A randomized, triple-blind, placebo-controlled trial. Curr. Radiopharm. 2022;15(4):332-340. https://doi: 10.2174/1874471015666220623104316
- Schmidt F.M.Q., González C.V.S., Mattar R.C. et al. Topical cream containing nanoparticles with vitamin E to prevent radiodermatitis in women with breast cancer: a clinical trial protocol. J. Wound. Care. 2020;29(LatAm sup 1):18-26. https://doi: 10.12968/jowc.2020.29.LatAm_sup_1.18.eng
- Tavakoli S. Klar A.S. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):1169. https://doi: 10.3390/biom10081169
- Pignol J.P., Olivotto I., Rakovitch E. et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J. Clin. Oncol. 2008;26(13):2085-2092. https://doi: 10.1200/JCO.2007.15.2488
- Freedman G.M., Li T., Nicolaou N. et al. Breast intensity-modulated radiation therapy reduces time spent with acute dermatitis for women of all breast sizes during radiation. Int. J. Radiat. Oncol. Biol. Phys. 2009;74(3):689-694. https://doi: 10.1016/j.ijrobp.2008.08.071
- Zlobinskaya O., Girst S., Greubel C. et al. Reduced side effects by proton microchannel radiotherapy: study in a human skin model. Radiat. Environ. Biophys. 2013;52(1):123-133. https://doi: 10.1007/s00411-012-0450-9
Supplementary files
