Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells
- Authors: Mohammadgholi M.1, Hosseinimehr S.1
-
Affiliations:
- Department of Radiopharmacy, Faculty of Pharmacy,, Mazandaran University of Medical Sciences
- Issue: Vol 31, No 19 (2024)
- Pages: 2751-2769
- Section: Anti-Infectives and Infectious Diseases
- URL: https://jdigitaldiagnostics.com/0929-8673/article/view/644586
- DOI: https://doi.org/10.2174/0929867330666230407104208
- ID: 644586
Cite item
Full Text
Abstract
Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.
About the authors
Mohsen Mohammadgholi
Department of Radiopharmacy, Faculty of Pharmacy,, Mazandaran University of Medical Sciences
Email: info@benthamscience.net
Seyed Hosseinimehr
Department of Radiopharmacy, Faculty of Pharmacy,, Mazandaran University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Hulvat, M.C. Cancer incidence and trends. Surg. Clin. North Am., 2020, 100(3), 469-481. doi: 10.1016/j.suc.2020.01.002 PMID: 32402294
- Yahya, E.B.; Alqadhi, A.M. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci., 2021, 269, 119087. doi: 10.1016/j.lfs.2021.119087 PMID: 33476633
- Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54, 101350. doi: 10.1016/j.jddst.2019.101350
- Ural, K.; Isa, C. Toxicology; Elsevier, 2021, pp. 233-241.
- Nuszkiewicz, J.; Woźniak, A.; Szewczyk-Golec, K. Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D. Int. J. Mol. Sci., 2020, 21(16), 5804. doi: 10.3390/ijms21165804 PMID: 32823530
- Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst., 2013, 105(4), 256-265. doi: 10.1093/jnci/djs629 PMID: 23291374
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov., 2009, 3(1), 73-80. doi: 10.2174/187221309787158371 PMID: 19149749
- Krylatov, A.V.; Maslov, L.N.; Voronkov, N.S.; Boshchenko, A.A.; Popov, S.V.; Gomez, L.; Wang, H.; Jaggi, A.S.; Downey, J.M. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev., 2018, 14(4), 290-300. doi: 10.2174/1573403X14666180702152436 PMID: 29962348
- Liu, R.; Bian, Y.; Liu, L.; Liu, L.; Liu, X.; Ma, S. Molecular pathways associated with oxidative stress and their potential applications in radiotherapy (Review). Int. J. Mol. Med., 2022, 49(5), 65. doi: 10.3892/ijmm.2022.5121 PMID: 35293589
- Raviraj, J.; Bokkasam, V.; Kumar, V.; Reddy, U.; Suman, V. Radiosensitizers, radioprotectors, and radiation mitigators. Indian J. Dent. Res., 2014, 25(1), 83-90. doi: 10.4103/0970-9290.131142 PMID: 24748306
- Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res., 2018, 41(11), 1033-1050. doi: 10.1007/s12272-018-1083-6 PMID: 30361949
- Laube, M.; Kniess, T.; Pietzsch, J. Development of antioxidant COX-2 inhibitors as radioprotective agents for radiation therapy-a hypothesis-driven review. Antioxidants, 2016, 5(2), 14. doi: 10.3390/antiox5020014 PMID: 27104573
- Hall, E.J.; Giaccia, A.J. Radiobiology for the radiologist. Springer, 2018.
- Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsujimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene, 2010, 29(14), 2070-2082. doi: 10.1038/onc.2009.487 PMID: 20101227
- Duprez, L.; Wirawan, E.; Berghe, T.V.; Vandenabeele, P. Major cell death pathways at a glance. Microbes Infect., 2009, 11(13), 1050-1062. doi: 10.1016/j.micinf.2009.08.013 PMID: 19733681
- Yu, X.; He, S. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virol. J., 2016, 13(1), 77. doi: 10.1186/s12985-016-0528-0 PMID: 27154074
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; DAngiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: recommendations of the Nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541. doi: 10.1038/s41418-017-0012-4 PMID: 29362479
- Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Classification of cell death: Recommendations of the nomenclature committee on cell death 2009. Cell Death Differ., 2009, 16(1), 3-11. doi: 10.1038/cdd.2008.150 PMID: 18846107
- van Doorn, W.G. Classes of programmed cell death in plants, compared to those in animals. J. Exp. Bot., 2011, 62(14), 4749-4761. doi: 10.1093/jxb/err196 PMID: 21778180
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741. doi: 10.1016/j.cell.2011.10.026 PMID: 22078875
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12. doi: 10.1002/path.2697 PMID: 20225336
- Bozhkov, P.V. Plant autophagy: Mechanisms and functions. J. Exp. Bot., 2018, 69(6), 1281-1285. doi: 10.1093/jxb/ery070 PMID: 29547996
- Pollack, J.; Harris, S.; Marten, M. Autophagy in filamentous fungi. Fungal Genet. Biol., 2009, 46(1), 1-8. doi: 10.1016/j.fgb.2008.10.010 PMID: 19010432
- Galluzzi, L.; Vitale, I.; Abrams, J.M.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; Dawson, T.M.; Dawson, V.L.; El-Deiry, W.S.; Fulda, S.; Gottlieb, E.; Green, D.R.; Hengartner, M.O.; Kepp, O.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Lu, X.; Madeo, F.; Malorni, W.; Mehlen, P.; Nuñez, G.; Peter, M.E.; Piacentini, M.; Rubinsztein, D.C.; Shi, Y.; Simon, H-U.; Vandenabeele, P.; White, E.; Yuan, J.; Zhivotovsky, B.; Melino, G.; Kroemer, G. Molecular definitions of cell death subroutines: Recommendations of the nomenclature committee on cell death 2012. Cell Death Differ., 2012, 19(1), 107-120. doi: 10.1038/cdd.2011.96 PMID: 21760595
- Proskuryakov, S.Y.; Konoplyannikov, A.G.; Gabai, V.L. Necrosis: A specific form of programmed cell death? Exp. Cell Res., 2003, 283(1), 1-16. doi: 10.1016/S0014-4827(02)00027-7 PMID: 12565815
- Khalid, N.; Azimpouran, M. Necrosis. Treasure Island (FL). StatPearls Publishing, 2023.
- Galluzzi, L.; Maiuri, M.C.; Vitale, I.; Zischka, H.; Castedo, M.; Zitvogel, L.; Kroemer, G. Cell death modalities: Classification and pathophysiological implications. Cell Death Differ., 2007, 14(7), 1237-1243. doi: 10.1038/sj.cdd.4402148 PMID: 17431418
- Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol., 2020, 8, 41. doi: 10.3389/fcell.2020.00041 PMID: 32117972
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199. doi: 10.7150/ijms.3635 PMID: 22408567
- Kim, B.; Hong, Y.; Lee, S.; Liu, P.; Lim, J.; Lee, Y.; Lee, T.; Chang, K.; Hong, Y. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int. J. Mol. Sci., 2015, 16(11), 26880-26913. doi: 10.3390/ijms161125991 PMID: 26569225
- Kim, W.; Lee, S.; Seo, D.; Kim, D.; Kim, K.; Kim, E.; Kang, J.; Seong, K.M.; Youn, H.; Youn, B. Cellular stress responses in radiotherapy. Cells, 2019, 8(9), 1105. doi: 10.3390/cells8091105 PMID: 31540530
- Vaes, R.D.W.; Hendriks, L.E.L.; Vooijs, M.; De Ruysscher, D. Biomarkers of radiotherapy-induced immunogenic cell death. Cells, 2021, 10(4), 930. doi: 10.3390/cells10040930 PMID: 33920544
- Maier, P.; Hartmann, L.; Wenz, F.; Herskind, C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci., 2016, 17(1), 102. doi: 10.3390/ijms17010102 PMID: 26784176
- Corre, I.; Guillonneau, M.; Paris, F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int. J. Mol. Sci., 2013, 14(11), 22678-22696. doi: 10.3390/ijms141122678 PMID: 24252908
- Chaurasia, M.; Bhatt, A.N.; Das, A.; Dwarakanath, B.S.; Sharma, K. Radiation-induced autophagy: Mechanisms and consequences. Free Radic. Res., 2016, 50(3), 273-290. doi: 10.3109/10715762.2015.1129534 PMID: 26764568
- Desai, R. Cell death. Available from: https://drrajivdesaimd.com/2014/01/01/cell-death/
- Manning, G.; Tichý, A.; Sirák, I.; Badie, C. Radiotherapy-associated long-term modification of expression of the inflammatory biomarker genes ARG1, BCL2L1, and MYC. Front. Immunol., 2017, 8, 412. doi: 10.3389/fimmu.2017.00412 PMID: 28443095
- Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Liu, C. The role of necroptosis in cancer biology and therapy. Mol. Cancer, 2019, 18(1), 100. doi: 10.1186/s12943-019-1029-8 PMID: 31122251
- Eriksson, D.; Stigbrand, T. Radiation-induced cell death mechanisms. Tumour Biol., 2010, 31(4), 363-372. doi: 10.1007/s13277-010-0042-8 PMID: 20490962
- Vitale, I.; Galluzzi, L.; Castedo, M.; Kroemer, G. Mitotic catastrophe: A mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol., 2011, 12(6), 385-392. doi: 10.1038/nrm3115 PMID: 21527953
- Vakifahmetoglu, H.; Olsson, M.; Zhivotovsky, B. Death through a tragedy: Mitotic catastrophe. Cell Death Differ., 2008, 15(7), 1153-1162. doi: 10.1038/cdd.2008.47 PMID: 18404154
- He, X.; Yang, A.; McDonald, D.G.; Riemer, E.C.; Vanek, K.N.; Schulte, B.A.; Wang, G.Y. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget, 2017, 8(41), 69797-69807. doi: 10.18632/oncotarget.19267 PMID: 29050242
- Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol., 2013, 75(1), 685-705. doi: 10.1146/annurev-physiol-030212-183653 PMID: 23140366
- Wang, G.; Cheng, X.; Zhang, J.; Liao, Y.; Jia, Y.; Qing, C. Possibility of inducing tumor cell senescence during therapy (Review). Oncol. Lett., 2021, 22(1), 496. doi: 10.3892/ol.2021.12757 PMID: 33981358
- Kwon, S.; Ko, H.; You, D.G.; Kataoka, K.; Park, J.H. Nanomedicines for reactive oxygen species mediated approach: An emerging paradigm for cancer treatment. Acc. Chem. Res., 2019, 52(7), 1771-1782. doi: 10.1021/acs.accounts.9b00136 PMID: 31241894
- del Río, L.A.; López-Huertas, E. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol., 2016, 57(7), pcw076. doi: 10.1093/pcp/pcw076 PMID: 27081099
- Martínez, M.C.; Andriantsitohaina, R. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antioxid. Redox Signal., 2009, 11(3), 669-702. doi: 10.1089/ars.2007.1993 PMID: 19014277
- Doshi, S.B.; Khullar, K.; Sharma, R.K.; Agarwal, A. Role of reactive nitrogen species in male infertility. Reprod. Biol. Endocrinol., 2012, 10(1), 109. doi: 10.1186/1477-7827-10-109 PMID: 23241221
- Bhattacharya, S. In Free radicals in human health and disease. Springer, 2015, 17-29. doi: 10.1007/978-81-322-2035-0_2
- Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002 PMID: 27666517
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 2018, 122(6), 877-902. doi: 10.1161/CIRCRESAHA.117.311401 PMID: 29700084
- Salim, S. Oxidative stress and psychological disorders. Curr. Neuropharmacol., 2014, 12(2), 140-147. doi: 10.2174/1570159X11666131120230309 PMID: 24669208
- McKelvey, K.J.; Hudson, A.L.; Back, M.; Eade, T.; Diakos, C.I. Radiation, inflammation and the immune response in cancer. Mamm. Genome, 2018, 29(11-12), 843-865. doi: 10.1007/s00335-018-9777-0 PMID: 30178305
- Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.; Liu, H.X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics, 2021, 11(10), 4839-4857. doi: 10.7150/thno.56747 PMID: 33754031
- Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735. doi: 10.3390/biom9110735 PMID: 31766246
- Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res., 2018, 5(1), 9. doi: 10.1186/s40779-018-0156-7 PMID: 29554942
- Wei, J.; Wang, B.; Wang, H.; Meng, L.; Zhao, Q.; Li, X.; Xin, Y.; Jiang, X. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev, 2019, 2019, 3010342. doi: 10.1155/2019/3010342
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218. doi: 10.18632/oncotarget.23208 PMID: 29467962
- Kato, J.; Svensson, C.I. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog. Mol. Biol. Transl. Sci., 2015, 131, 251-279. doi: 10.1016/bs.pmbts.2014.11.014 PMID: 25744676
- Neher, M.D.; Weckbach, S.; Flierl, M.A.; Huber-Lang, M.S.; Stahel, P.F. Molecular mechanisms of inflammation and tissue injury after major trauma-is complement the "bad guy"? J. Biomed. Sci., 2011, 18(1), 90. doi: 10.1186/1423-0127-18-90 PMID: 22129197
- Mavragani, I.V.; Laskaratou, D.A.; Frey, B.; Candéias, S.M.; Gaipl, U.S.; Lumniczky, K.; Georgakilas, A.G. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol. Res., 2016, 5(1), 12-33. doi: 10.1039/c5tx00222b PMID: 30090323
- Ashley, N.T.; Weil, Z.M.; Nelson, R.J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst., 2012, 43(1), 385-406. doi: 10.1146/annurev-ecolsys-040212-092530
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34. doi: 10.3109/08830185.2010.529976 PMID: 21235323
- Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112. doi: 10.1038/s41577-019-0215-7 PMID: 31558839
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci., 2019, 20(23), 6008. doi: 10.3390/ijms20236008 PMID: 31795299
- Brooks, A.J.; Dehkhoda, F.; Kragelund, B.B. Cytokine receptors. Princ Endocrinol Horm Action, 2016. doi: 10.1007/978-3-319-27318-1_8-1
- Singh, V.; Gupta, D.; Arora, R. NF-κB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries, 2015, 3(1), e35. doi: 10.15190/d.2015.27 PMID: 32309561
- Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol., 2018, 7, 81-86. doi: 10.1016/j.cotox.2017.11.002 PMID: 29862377
- Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol., 2021, 12, 716469. doi: 10.3389/fimmu.2021.716469 PMID: 34434197
- Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol., 2017, 17(9), 545-558. doi: 10.1038/nri.2017.52 PMID: 28580957
- Patel, Y.; Heyward, C.A.; White, M.R.H.; Kell, D.B. Predicting the points of interaction of small molecules in the NF-κB pathway. BMC Syst. Biol., 2011, 5(1), 32. doi: 10.1186/1752-0509-5-32 PMID: 21342508
- Munshi, A.; Ramesh, R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer, 2013, 4(9-10), 401-408. doi: 10.1177/1947601913485414 PMID: 24349638
- Dent, P.; Yacoub, A.; Fisher, P.B.; Hagan, M.P.; Grant, S. MAPK pathways in radiation responses. Oncogene, 2003, 22(37), 5885-5896. doi: 10.1038/sj.onc.1206701 PMID: 12947395
- Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol., 2012, 4(11), a011254. doi: 10.1101/cshperspect.a011254 PMID: 23125017
- Harrison, D.A. The JAK/STAT Pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a011205. doi: 10.1101/cshperspect.a011205 PMID: 22383755
- Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal., 2017, 15(1), 23. doi: 10.1186/s12964-017-0177-y PMID: 28637459
- Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol., 2020, 80, 106210. doi: 10.1016/j.intimp.2020.106210 PMID: 31972425
- Hin Tang, J.J.; Hao Thng, D.K.; Lim, J.J.; Toh, T.B. JAK/STAT signaling in hepatocellular carcinoma. Hepat. Oncol., 2020, 7(1), HEP18. doi: 10.2217/hep-2020-0001 PMID: 32273976
- Deorukhkar, A.; Krishnan, S. Targeting inflammatory pathways for tumor radiosensitization. Biochem. Pharmacol., 2010, 80(12), 1904-1914. doi: 10.1016/j.bcp.2010.06.039 PMID: 20599771
- Bharadwaj, U.; Kasembeli, M.M.; Robinson, P.; Tweardy, D.J. Targeting Janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: Rationale, progress, and caution. Pharmacol. Rev., 2020, 72(2), 486-526. doi: 10.1124/pr.119.018440 PMID: 32198236
- Hein, A.L.; Ouellette, M.M.; Yan, Y. Radiation-induced signaling pathways that promote cancer cell survival (Review). Int. J. Oncol., 2014, 45(5), 1813-1819. doi: 10.3892/ijo.2014.2614 PMID: 25174607
- Xu, F.; Na, L.; Li, Y.; Chen, L. RETRACTED ARTICLE: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci., 2020, 10(1), 54. doi: 10.1186/s13578-020-00416-0 PMID: 32266056
- Padmanabhan, R.; Meskin, N.; Al Moustafa, A.E. Mathematical Models of Cancer and Different Therapies; Springer, 2021, pp. 123-133. doi: 10.1007/978-981-15-8640-8_6
- Rosenblatt, E.; Zubizarreta, E. Radiotherapy in cancer care: Facing the global challenge. Int. Atom. Energy Agency Vienna, 2017.
- Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci., 2014, 1, 24. doi: 10.3389/fmolb.2014.00024 PMID: 25988165
- Hubenak, J.R.; Zhang, Q.; Branch, C.D.; Kronowitz, S.J. Mechanisms of injury to normal tissue after radiotherapy: a review. Plast. Reconstr. Surg., 2014, 133(1), 49e-56e. doi: 10.1097/01.prs.0000440818.23647.0b PMID: 24374687
- Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol., 2009, 10(7), 718-726. doi: 10.1016/S1470-2045(09)70082-8 PMID: 19573801
- Ahmad, S.S.; Duke, S.; Jena, R.; Williams, M.V.; Burnet, N.G. Advances in radiotherapy. BMJ, 2012, 345(dec04 1), e7765. doi: 10.1136/bmj.e7765 PMID: 23212681
- Khan, H.A.; Alhomida, A.S. A review of the logistic role of l-carnitine in the management of radiation toxicity and radiotherapy side effects. J. Appl. Toxicol., 2011, 31(8), 707-713. doi: 10.1002/jat.1716 PMID: 21818761
- Chen, H.H.W.; Kuo, M.T. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget, 2017, 8(37), 62742-62758. doi: 10.18632/oncotarget.18409 PMID: 28977985
- Braunstein, S.; Nakamura, J.L. Radiotherapy-induced malignancies: Review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front. Oncol., 2013, 3, 73. doi: 10.3389/fonc.2013.00073 PMID: 23565507
- Vilalta, M.; Rafat, M.; Graves, E.E. Effects of radiation on metastasis and tumor cell migration. Cell. Mol. Life Sci., 2016, 73(16), 2999-3007. doi: 10.1007/s00018-016-2210-5 PMID: 27022944
- Barker, H.E.; Paget, J.T.E.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer, 2015, 15(7), 409-425. doi: 10.1038/nrc3958 PMID: 26105538
- Wang, J.; Wang, H.; Qian, H. Biological effects of radiation on cancer cells. Mil. Med. Res., 2018, 5(1), 20. doi: 10.1186/s40779-018-0167-4 PMID: 29958545
- Majeed, H.; Gupta, V. Adverse effects of radiation therapy. StatPearls, 2020.
- Gieringer, M.; Gosepath, J.; Naim, R. Radiotherapy and wound healing: Principles, management and prospects (Review). Oncol. Rep., 2011, 26(2), 299-307. doi: 10.3892/or.2011.1319 PMID: 21617873
- Tang, L.; Wei, F.; Wu, Y.; He, Y.; Shi, L.; Xiong, F.; Gong, Z.; Guo, C.; Li, X.; Deng, H.; Cao, K.; Zhou, M.; Xiang, B.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Zeng, Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J. Exp. Clin. Cancer Res., 2018, 37(1), 87. doi: 10.1186/s13046-018-0758-7 PMID: 29688867
- Galeaz, C.; Totis, C.; Bisio, A. Radiation resistance: A matter of transcription factors. Front. Oncol., 2021, 11, 662840. doi: 10.3389/fonc.2021.662840 PMID: 34141616
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167. doi: 10.1089/ars.2012.5149 PMID: 23991888
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616. doi: 10.1016/j.freeradbiomed.2010.09.006 PMID: 20840865
- Cheki, M.; Yahyapour, R.; Farhood, B.; Rezaeyan, A.; Shabeeb, D.; Amini, P.; Rezapoor, S.; Najafi, M. COX-2 in radiotherapy: A potential target for radioprotection and radiosensitization. Curr. Mol. Pharmacol., 2018, 11(3), 173-183. doi: 10.2174/1874467211666180219102520 PMID: 29468988
- Lee, T.K.; Stupans, I. Radioprotection: The non-steroidal anti-inflammatory drugs (NSAIDs) and prostaglandins. J. Pharm. Pharmacol., 2010, 54(11), 1435-1445. doi: 10.1211/00223570254 PMID: 12495545
- Khayyal, M.T.; El-Ghazaly, M.A.; El-Hazek, R.M.; Nada, A.S. The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats. Inflammopharmacology, 2009, 17(5), 255-266. doi: 10.1007/s10787-009-0014-z PMID: 19798548
- Demirel, C.; Kilciksiz, S.C.; Gurgul, S.; Erdal, N.; Yigit, S.; Tamer, L.; Ayaz, L. Inhibition of radiation-induced oxidative damage in the lung tissue: May acetylsalicylic acid have a positive role? Inflammation, 2016, 39(1), 158-165. doi: 10.1007/s10753-015-0234-x PMID: 26276129
- Hosseinimehr, S.J.; Nobakht, R.; Ghasemi, A.; Pourfallah, T.A. Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes. Radiat. Oncol. J., 2015, 33(3), 256-260. doi: 10.3857/roj.2015.33.3.256 PMID: 26484310
- Alok, A.; Adhikari, J.S.; Chaudhury, N.K. Radioprotective role of clinical drug diclofenac sodium. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2013, 755(2), 156-162. doi: 10.1016/j.mrgentox.2013.06.015 PMID: 23827778
- Yamasaki, M.C.; Nejaim, Y.; Roque-Torres, G.D.; Freitas, D.Q. Meloxicam as a radiation-protective agent on mandibles of irradiated rats. Braz. Dent. J., 2017, 28(2), 249-255. doi: 10.1590/0103-6440201701271 PMID: 28492757
- Dokmeci, D.; Akpolat, M.; Aydogdu, N.; Uzal, C.; Turan, N.F. The modifying effect of ibuprofen on total body irradiation-induced elevation of oxidative reactions in male hamsters. Acta Med. Biol., 2004, 52(2), 67-72.
- Nishiguchi, I.; Furuta, Y.; Hunter, N.; Murray, D.; Milas, L. Radioprotection of hematopoietic tissues in mice by indomethacin. Radiat. Res., 1990, 122(2), 188-192. doi: 10.2307/3577605 PMID: 2159648
- Hofmann, B.; Steinhilber, D. 5-Lipoxygenase inhibitors: A review of recent patents (2010 2012). Expert Opin. Ther. Pat., 2013, 23(7), 895-909. doi: 10.1517/13543776.2013.791678 PMID: 23600432
- Peixoto, C.A.; Silva, B.S. Anti-inflammatory effects of diethylcarbamazine: A review. Eur. J. Pharmacol., 2014, 734, 35-41. doi: 10.1016/j.ejphar.2014.03.046 PMID: 24726556
- Farzipour, S.; Amiri, F.T.; Mihandoust, E.; Shaki, F.; Noaparast, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J. Bioenerg. Biomembr., 2020, 52(1), 39-46. doi: 10.1007/s10863-019-09820-9 PMID: 31853753
- Torabizadeh, S.A.; Rezaeifar, M.; Jomehzadeh, A.; Nabizadeh Haghighi, F.; Ansari, M. Radioprotective potential of sulindac sulfide to prevent DNA damage due to ionizing radiation. Drug Des. Devel. Ther., 2019, 13, 4127-4134. doi: 10.2147/DDDT.S218022 PMID: 31827319
- Hosseinimehr, S.; Fathi, M.; Ghasemi, A.; Shiadeh, S.R.; Pourfallah, T. Celecoxib mitigates genotoxicity induced by ionizing radiation in human blood lymphocytes. Res. Pharm. Sci., 2017, 12(1), 82-87. doi: 10.4103/1735-5362.199051 PMID: 28255318
- Hormati, A.; Ahmadpour, S.; Afkhami Ardekani, M.; Khodadust, F.; Refahi, S. Radioprotective effects of montelukast, a selective leukotriene CysLT1 receptor antagonist, against nephrotoxicity induced by gamma radiation in mice. J. Biochem. Mol. Toxicol., 2020, 34(6), e22479. doi: 10.1002/jbt.22479 PMID: 32125029
- Tokat, A.O.; Akbulut, A.; Billur, D.; Koca, G.; Bayram, P.; Kuru, S.; Karasu, S.; Aydogmus, S.; Cakmak, H.; Ozmert, S.; Korkmaz, M. Montelukast attenuates radioactive I131-induced pulmonary damage on rats. Int. J. Radiat. Biol., 2018, 94(6), 542-550. doi: 10.1080/09553002.2018.1466065 PMID: 29659324
- Koca, G.; Gültekin, S.S.; Han, Ü.; Kuru, S.; Demirel, K.; Korkmaz, M. The efficacy of montelukast as a protective agent against 131I-induced salivary gland damage in rats. Nucl. Med. Commun., 2013, 34(5), 507-517. doi: 10.1097/MNM.0b013e32835ffecd PMID: 23478587
- Di Raimondo, D.; Tuttolomondo, A.; Buttà, C.; Miceli, S.; Licata, G.; Pinto, A. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr. Pharm. Des., 2012, 18(28), 4385-4413. doi: 10.2174/138161212802481282 PMID: 22283779
- Robbins, M.E.; Diz, D.I. Pathogenic role of the reninangiotensin system in modulating radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys., 2006, 64(1), 6-12. doi: 10.1016/j.ijrobp.2005.08.033 PMID: 16377409
- Hitomi, H.; Kiyomoto, H.; Nishiyama, A. Angiotensin II and oxidative stress. Curr. Opin. Cardiol., 2007, 22(4), 311-315. doi: 10.1097/HCO.0b013e3281532b53 PMID: 17556883
- Benzie, I.F.F.; Tomlinson, B. Antioxidant power of angiotensin-converting enzyme inhibitors in vitro. Br. J. Clin. Pharmacol., 1998, 45(2), 168-169. doi: 10.1046/j.1365-2125.1998.00664.x PMID: 9491832
- Bhuyan, B.J.; Mugesh, G. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org. Biomol. Chem., 2011, 9(5), 1356-1365. doi: 10.1039/C0OB00823K PMID: 21186397
- Hosseinimehr, S.J.; Mahmoudzadeh, A.; Akhlagpour, S. Captopril protects mice bone marrow cells against genotoxicity induced by gamma irradiation. Cell Biochem. Funct., 2007, 25(4), 389-394. doi: 10.1002/cbf.1311 PMID: 16447141
- Davis, T.A.; Landauer, M.R.; Mog, S.R.; Barshishat-Kupper, M.; Zins, S.R.; Amare, M.F.; Day, R.M. Timing of captopril administration determines radiation protection or radiation sensitization in a murine model of total body irradiation. Exp. Hematol., 2010, 38(4), 270-281. doi: 10.1016/j.exphem.2010.01.004 PMID: 20116413
- Rittase, W.B.; McCart, E.A.; Muir, J.M.; Bouten, R.M.; Slaven, J.E.; Mungunsukh, O.; Bylicky, M.A.; Wilkins, W.L.; Lee, S.H.; Gudmundsson, K.O.; Di Pucchio, T.; Olsen, C.H.; Du, Y.; Day, R.M. Effects of captopril against radiation injuries in the Göttingen minipig model of hematopoietic-acute radiation syndrome. PLoS One, 2021, 16(8), e0256208. doi: 10.1371/journal.pone.0256208 PMID: 34449797
- Yoon, S.-C.; Park, J.-M.; Jang, H.-S.; Shinn, K.-S.; Bahk, Y.-W. Radioprotective effect of captopril on the mouse jejunal mucosa. Int. J. Radiat. Oncol. Biol. Phys., 1994, 30(4), 873-878. doi: 10.1016/0360-3016(94)90363-8 PMID: 7960990
- Day, R.M.; Davis, T.A.; Barshishat-Kupper, M.; McCart, E.A.; Tipton, A.J.; Landauer, M.R. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril. Int. Immunopharmacol., 2013, 15(2), 348-356. doi: 10.1016/j.intimp.2012.12.029 PMID: 23328620
- Charrier, S.; Michaud, A.; Badaoui, S.; Giroux, S.; Ezan, E.; Sainteny, F.; Corvol, P.; Vainchenker, W. Inhibition of angiotensin Iconverting enzyme induces radioprotection by preserving murine hematopoietic short-term reconstituting cells. Blood, 2004, 104(4), 978-985. doi: 10.1182/blood-2003-11-3828 PMID: 15105290
- Fooladi, M.; Cheki, M.; Shirazi, A.; Sheikhzadeh, P.; Amirrashedi, M.; Ghahramani, F.; Khoobi, M. Histopathological evaluation of protective effect of telmisartan against radiation-induced bone marrow injury. J. Biomed. Phys. Eng., 2021, 12(3), 277-284. PMID: 35698535
- Markowitz, J.F. Pediatric Gastrointestinal and Liver Disease W.B. Saunders: Saint Louis, 2011; pp. 490-504..
- Pearson, D.C.; JourdHeuil, D.; Meddings, J.B. The anti-oxidant properties of 5-aminosalicylic acid. Free Radic. Biol. Med., 1996, 21(3), 367-373. doi: 10.1016/0891-5849(96)00031-7 PMID: 8855448
- Koelink, P.J. 5-ASA-colorectal cancer-cell death: an intriguing threesome; Leiden University, 2010.
- Mantena, S.K.; Unnikrishnan, M.K.; Joshi, R.; Radha, V.; Devi, P.U.; Mukherjee, T. In vivo radioprotection by 5-aminosalicylic acid. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2008, 650(1), 63-79. doi: 10.1016/j.mrgentox.2007.10.005 PMID: 18155638
- Sudheer Kumar, M.; Unnikrishnan, M.K.; Uma Devi, P. Effect of 5-aminosalicylic acid on radiation-induced micronuclei in mouse bone marrow. Mutat. Res., 2003, 527(1-2), 7-14. doi: 10.1016/S0027-5107(03)00052-6 PMID: 12787909
- Hall, S.; Rudrawar, S.; Zunk, M.; Bernaitis, N.; Arora, D.; McDermott, C.; Anoopkumar-Dukie, S. Protection against radiotherapy-induced toxicity. Antioxidants, 2016, 5(3), 22. doi: 10.3390/antiox5030022 PMID: 27399787
- Dutta, S.; Wadekar, R.R.; Roy, T. Radioprotective natural products as alternative complements in oncological radiotherapy. Bol. Latinoam. Caribe Plantas Med. Aromat., 2021, 20(2), 101-122. doi: 10.37360/blacpma.21.20.2.9
- Mantena, S.K.; Unnikrishnan, M.K.; Uma Devi, P. Radioprotective effect of sulfasalazine on mouse bone marrow chromosomes. Mutagenesis, 2008, 23(4), 285-292. doi: 10.1093/mutage/gen005 PMID: 18353769
- Kim, S.W.; Kang, H.J.; Jhon, M.; Kim, J.W.; Lee, J.Y.; Walker, A.J.; Agustini, B.; Kim, J.M.; Berk, M. Statins and inflammation: New therapeutic opportunities in psychiatry. Front. Psychiatry, 2019, 10, 103. doi: 10.3389/fpsyt.2019.00103 PMID: 30890971
- Bedi, O.; Dhawan, V.; Sharma, P.L.; Kumar, P. Pleiotropic effects of statins: New therapeutic targets in drug design. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(7), 695-712. doi: 10.1007/s00210-016-1252-4 PMID: 27146293
- Davignon, J.; Jacob, R.F.; Mason, R.P. The antioxidant effects of statins. Coron. Artery Dis., 2004, 15(5), 251-258. doi: 10.1097/01.mca.0000131573.31966.34 PMID: 15238821
- Fritz, G.; Henninger, C.; Huelsenbeck, J. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br. Med. Bull., 2011, 97(1), 17-26. doi: 10.1093/bmb/ldq044 PMID: 21252099
- Talebpour Amiri, F.; Hamzeh, M.; Naeimi, R.A.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of atorvastatin against ionizing radiation-induced nephrotoxicity in mice. Int. J. Radiat. Biol., 2018, 94(2), 106-113. doi: 10.1080/09553002.2018.1420926 PMID: 29268056
- Hosseinimehr, S.J.; Izakmehri, M.; Ghasemi, A. In vitro protective effect of atorvastatin against ionizing radiation induced genotoxicity in human lymphocytes. Cell. Mol. Biol., 2015, 61(1), 68-71. PMID: 25817349
- Naeimi, R.A.; Talebpour Amiri, F.; Khalatbary, A.R.; Ghasemi, A.; Zargari, M.; Ghesemi, M.; Hosseinimehr, S.J. Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice. Reprod. Toxicol., 2017, 72, 115-121. doi: 10.1016/j.reprotox.2017.06.052 PMID: 28668617
- Doi, H.; Matsumoto, S.; Odawara, S.; Shikata, T.; Kitajima, K.; Tanooka, M.; Takada, Y.; Tsujimura, T.; Kamikonya, N.; Hirota, S. Pravastatin reduces radiation-induced damage in normal tissues. Exp. Ther. Med., 2017, 13(5), 1765-1772. doi: 10.3892/etm.2017.4192 PMID: 28565765
- Yang, H.; Huang, F.; Tao, Y.; Zhao, X.; Liao, L.; Tao, X. Simvastatin ameliorates ionizing radiation-induced apoptosis in the thymus by activating the AKT/sirtuin 1 pathway in mice. Int. J. Mol. Med., 2017, 40(3), 762-770. doi: 10.3892/ijmm.2017.3047 PMID: 28677744
- Sun, X.; Yang, X.; Chen, J.; Ge, X.L.; Qin, Q.; Zhu, H.; Zhang, C.; Xu, L. Simvastatin attenuates radiation-induced salivary gland dysfunction in mice. Drug Des. Devel. Ther., 2016, 10, 2271-2278. doi: 10.2147/DDDT.S105809 PMID: 27471375
- Zhao, X.; Yang, H.; Jiang, G.; Ni, M.; Deng, Y.; Cai, J.; Li, Z.; Shen, F.; Tao, X. Simvastatin attenuates radiation-induced tissue damage in mice. J. Radiat. Res., 2014, 55(2), 257-264. doi: 10.1093/jrr/rrt115 PMID: 24105712
- Ziegler, V.; Henninger, C.; Simiantonakis, I.; Buchholzer, M.; Ahmadian, M.R.; Budach, W.; Fritz, G. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis., 2017, 8(8), e2978-e2978. doi: 10.1038/cddis.2017.372 PMID: 28796249
- El-Batal, A.I.; Thabet, N.M.; Osman, A.; Ghaffar, A.; Azab, K.S. Amelioration of oxidative damage induced in gamma irradiated rats by nano selenium and lovastatin mixture. World Appl. Sci. J., 2012, 19(7), 962-971.
- Nübel, T.; Damrot, J.; Roos, W.P.; Kaina, B.; Fritz, G. Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin. Cancer Res., 2006, 12(3), 933-939. doi: 10.1158/1078-0432.CCR-05-1903 PMID: 16467108
- Xourgia, E.; Tzouganatou, E.M.; Papazafiropoulou, A.; Melidonis, A. Anti-inflammatory properties of antidiabetic agents. World J. Metaanal., 2019, 7(4), 129-141. doi: 10.13105/wjma.v7.i4.129
- Hasanpour Dehkordi, A.; Abbaszadeh, A.; Mir, S.; Hasanvand, A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. J. Renal Inj. Prev., 2019, 8(1), 54-61. doi: 10.15171/jrip.2019.11
- Da, F.; Guo, J.; Yao, L.; Gao, Q.; Jiao, S.; Miao, X.; Liu, J. Pretreatment with metformin protects mice from whole-body irradiation. J. Radiat. Res., 2021, 62(4), 618-625. doi: 10.1093/jrr/rrab012 PMID: 33912960
- Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53. doi: 10.2174/1574884713666181025141559 PMID: 30360725
- Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 809, 24-32. doi: 10.1016/j.mrgentox.2016.09.001 PMID: 27692296
- Liu, H.; Wang, S.; Wu, Z.; Huang, Z.; Chen, W.; Yang, Y.; Cui, J.; Liu, C.; Zhao, H.; Guo, J.; Zhang, P.; Gao, F.; Li, B.; Cai, J. Glibenclamide, a diabetic drug, prevents acute radiation-induced liver injury of mice via up-regulating intracellular ROS and subsequently activating Akt-NF-κB pathway. Oncotarget, 2017, 8(25), 40568-40582. doi: 10.18632/oncotarget.16501 PMID: 28380448
- Pouri, M.; Shaghaghi, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of gliclazide as an anti-hyperglycemic agent against genotoxicity induced by ionizing radiation on human lymphocytes. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 40-46. doi: 10.2174/1871525717666190524092918 PMID: 31124426
- Heliövaara, M.K.; Herz, M.; Teppo, A.M.; Leinonen, E.; Ebeling, P. Pioglitazone has anti-inflammatory effects in patients with Type 2 diabetes. J. Endocrinol. Invest., 2007, 30(4), 292-297. doi: 10.1007/BF03346296 PMID: 17556865
- Kazemi, R.; Hosseinimehr, S.J. Radioprotective effect of pioglitazone against genotoxicity induced by ionizing radiation in healthy human lymphocytes. Cardiovasc. Hematol. Agents Med. Chem., 2021, 19(1), 72-75. doi: 10.2174/1871525718666200525005231 PMID: 32448107
- Kuruba, V.; Gollapalli, P. Natural radioprotectors and their impact on cancer drug discovery. Radiat. Oncol. J., 2018, 36(4), 265-275. doi: 10.3857/roj.2018.00381 PMID: 30630265
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell Longev., 2016, 2016, 7432797. doi: 10.1155/2016/7432797
- Adnan, M.; Rasul, A.; Shah, M.A.; Hussain, G.; Asrar, M.; Riaz, A.; Sarfraz, I.; Hussain, A.; Khorsandi, K.; Lai, N.S. Radioprotective role of natural polyphenols: From sources to mechanisms. Anticancer Agents Med. Chem., 2022, 22(1), 30-39. doi: 10.2174/1871520621666210419095829 PMID: 33874875
- Faramarzi, S.; Piccolella, S.; Manti, L.; Pacifico, S. Could polyphenols really be a good radioprotective strategy? Molecules, 2021, 26(16), 4969. doi: 10.3390/molecules26164969 PMID: 34443561
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 162750. doi: 10.1155/2013/162750
- Procházková, D.; Bouová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523. doi: 10.1016/j.fitote.2011.01.018 PMID: 21277359
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584. doi: 10.1016/S0955-2863(02)00208-5 PMID: 12550068
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042. doi: 10.1021/np9904509 PMID: 10924197
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124. doi: 10.1016/j.foodchem.2019.125124 PMID: 31288163
- Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295. doi: 10.3389/fphar.2019.01295 PMID: 31749703
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 2010, 69(3), 273-278. doi: 10.1017/S002966511000162X PMID: 20569521
- Wang, Q.; Xie, C.; Xi, S.; Qian, F.; Peng, X.; Huang, J.; Tang, F. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules, 2020, 25(23), 5719. doi: 10.3390/molecules25235719 PMID: 33287417
- Mashhadi, A.B.M. An overview of the cellular mechanisms of flavonoids radioprotective effects. Adv. Pharm. Bull., 2019, 10(1), 13-19. doi: 10.15171/apb.2020.002 PMID: 32002357
- Hosseinimehr, S.J.; Ahmadi, A.; Beiki, D.; Habibi, E.; Mahmoudzadeh, A. Protective effects of hesperidin against genotoxicity induced by 99mTc-MIBI in human cultured lymphocyte cells. Nucl. Med. Biol., 2009, 36(7), 863-867. doi: 10.1016/j.nucmedbio.2009.06.002 PMID: 19720298
- Hosseinimehr, S.J.; Mahmoudzadeh, A.; Ahmadi, A.; Mohamadifar, S.; Akhlaghpoor, S. Radioprotective effects of hesperidin against genotoxicity induced by -irradiation in human lymphocytes. Mutagenesis, 2009, 24(3), 233-235. doi: 10.1093/mutage/gep001 PMID: 19193695
- El-Gazzar, M.G.; Zaher, N.H.; El-Hossary, E.M.; Ismail, A.F.M. Radio-protective effect of some new curcumin analogues. J. Photochem. Photobiol. B, 2016, 162, 694-702. doi: 10.1016/j.jphotobiol.2016.08.002 PMID: 27505300
- Tang, F.R.; Loke, W.K.; Wong, P.; Khoo, B.C. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol. Behav., 2017, 175, 37-46. doi: 10.1016/j.physbeh.2017.03.027 PMID: 28341234
- Wang, H.; Sim, M.K.; Loke, W.K.; Chinnathambi, A.; Alharbi, S.A.; Tang, F.R.; Sethi, G. Potential protective effects of ursolic acid against gamma irradiation-induced damage are mediated through the modulation of diverse inflammatory mediators. Front. Pharmacol., 2017, 8, 352. doi: 10.3389/fphar.2017.00352 PMID: 28670276
- Asadullina, N.; Gudkov, S.; Bruskov, V. Biochemistry and Biophysics. In: Springer Nature BV; , 2012; 442, p. 22.
- Najafi, M.; Shirazi, A.; Motevaseli, E.; Rezaeyan, A.H.; Salajegheh, A.; Rezapoor, S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology, 2017, 25(4), 403-413. doi: 10.1007/s10787-017-0332-5 PMID: 28255737
- AlMathkour, M.M.; AlSuhaibani, E.S. Protective effect of aspirin on γ radiation-induced sperm malformations in Swiss Albino male mice. Am. J. Life Sci., 2014, 2(4), 205-215. doi: 10.11648/j.ajls.20140204.13
- Koca, G.; Yalniz-Akkaya, Z.; Gültekin, S.S.; Yumusak, N.; Demirel, K.; Korkmaz, M.; Atilgan, H.I.; Altiparmak, U.E.; Onal, B.; Ornek, F. Radioprotective effect of montelukast sodium in rat lacrimal glands after radioiodine treatment. Rev. Esp. Med. Nucl. Imagen Mol., 2013, 32(5), 294-300. PMID: 23499122
- Atilgan, H.I.; Yumuşak, N.; Sadic, M.; Gultekin, S.S.; Gokhan, K.; Ozyurt, S.; Demirel, K.; Korkmaz, M. Radioprotective effect of montelukast sodium against hepatic radioiodine (131I) toxicity: A histopathological investigation in the rat model. Ankara Univ. Vet. Fak. Derg., 2015, 62(1), 37-43. doi: 10.1501/Vetfak_0000002655
- Ostrau, C.; Hülsenbeck, J.; Herzog, M.; Schad, A.; Torzewski, M.; Lackner, K.J.; Fritz, G. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother. Oncol., 2009, 92(3), 492-499. doi: 10.1016/j.radonc.2009.06.020 PMID: 19615773
Supplementary files
