Cognitive Benefits of Sodium-Glucose Co-Transporters-2 Inhibitors in the Diabetic Milieu


Cite item

Full Text

Abstract

Patients with diabetes are at higher risk of cognitive impairment and memory loss than the normal population. Thus, using hypoglycemic agents to improve brain function is important for diabetic patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are a class of therapeutic agents used in the management of diabetes that has some pharmacologic effects enabling them to fight against the onset and progress of memory deficits. Although the exact mediating pathways are not well understood, emerging evidence suggests that SGLT2 inhibition is associated with improved brain function. This study reviewed the possible mechanisms and provided evidence suggesting SGLT2 inhibitors could ameliorate cognitive deficits.

About the authors

Habib Yaribeygi

Research centre of physiology, Semnan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Mina Maleki

Chronic kidney disease research centre, Shahid Beheshti University

Email: info@benthamscience.net

Thozhukat Sathyapalan

Department of Diabetes and Endocrinology,, University of Hull

Author for correspondence.
Email: info@benthamscience.net

Manfredi Rizzo

Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo

Email: info@benthamscience.net

Amirhossein Sahebkar

Department of Medical Biotechnology, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Magliano, DJ; Islam, RM; Barr, EL; Gregg, EW; Pavkov, ME; Harding, JL Trends in incidence of total or type 2 diabetes: systematic review. BMJ, 2019, 366, l5003.
  2. Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Primers, 2019, 5(1), 1-18. doi: 10.1038/s41572-018-0051-2 PMID: 30617281
  3. Kioskli, K.; Scott, W.; Winkley, K.; Kylakos, S.; McCracken, L.M. Psychosocial factors in painful diabetic neuropathy: a systematic review of treatment trials and survey studies. Pain Med., 2019, 20(9), 1756-1773. doi: 10.1093/pm/pnz071 PMID: 30980660
  4. Rojas, D.R.; Kuner, R.; Agarwal, N. Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy. J. Mol. Med. (Berl.), 2019, 97(6), 845-854. doi: 10.1007/s00109-019-01781-1 PMID: 30949723
  5. Zhang, X.; Jiang, X.; Han, S.; Liu, Q.; Zhou, J. Type 2 diabetes mellitus is associated with the risk of cognitive impairment: a meta-analysis. J. Mol. Neurosci., 2019, 68(2), 251-260. doi: 10.1007/s12031-019-01290-3 PMID: 30949957
  6. Albai, O.; Frandes, M.; Timar, R.; Roman, D.; Timar, B. Risk factors for developing dementia in type 2 diabetes mellitus patients with mild cognitive impairment. Neuropsychiatr. Dis. Treat., 2019, 15, 167-175. doi: 10.2147/NDT.S189905 PMID: 30655669
  7. Chaytor, N.S.; Barbosa-Leiker, C.; Ryan, C.M.; Germine, L.T.; Hirsch, I.B.; Weinstock, R.S. Clinically significant cognitive impairment in older adults with type 1 diabetes. J. Diabetes Complicat., 2019, 33(1), 91-97. doi: 10.1016/j.jdiacomp.2018.04.003 PMID: 29728302
  8. Sekhon, H.; Allali, G.; Launay, C.P.; Barden, J.; Szturm, T.; Liu-Ambrose, T.; Chester, V.L.; Wong, C.H.; Beauchet, O. Motoric cognitive risk syndrome, incident cognitive impairment and morphological brain abnormalities: Systematic review and meta-analysis. Maturitas, 2019, 123, 45-54. doi: 10.1016/j.maturitas.2019.02.006 PMID: 31027677
  9. Toyoshima, K.; Kako, Y.; Toyomaki, A.; Shimizu, Y.; Tanaka, T.; Nakagawa, S.; Inoue, T.; Martinez-Aran, A.; Vieta, E.; Kusumi, I. Associations between cognitive impairment and quality of life in euthymic bipolar patients. Psychiatry Res., 2019, 271, 510-515. doi: 10.1016/j.psychres.2018.11.061 PMID: 30551083
  10. McWhirter, L.; Ritchie, C.; Stone, J.; Carson, A. Functional cognitive disorders: a systematic review. Lancet Psychiatry, 2020, 7(2), 191-207. doi: 10.1016/S2215-0366(19)30405-5 PMID: 31732482
  11. Benbow, A.A.; Anderson, P.L. Long-term improvements in probability and cost biases following brief cognitive behavioral therapy for social anxiety disorder. Cognit. Ther. Res., 2019, 43(2), 412-418. doi: 10.1007/s10608-018-9947-0
  12. Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. Mechanistic effects of SGLT2 inhibition on blood pressure in diabetes. Diabetes Metab. Syndr., 2019, 13(2), 1679-1683. doi: 10.1016/j.dsx.2019.03.031 PMID: 31336541
  13. Yaribeygi, H.; Butler, A.E.; Atkin, S.L.; Katsiki, N.; Sahebkar, A. Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. J. Cell. Physiol., 2019, 234(1), 223-230. doi: 10.1002/jcp.26851 PMID: 30076706
  14. Yaribeygi, H.; Ashrafizadeh, M.; Henney, N.C.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacol. Res., 2020, 152, 104611. doi: 10.1016/j.phrs.2019.104611 PMID: 31863868
  15. Akbari, A; Rafiee, M; Sathyapalan, T; Sahebkar, A. Impacts of sodium/glucose cotransporter-2 inhibitors on circulating uric acid concentrations: A systematic review and meta-analysis. J. Diabetes Res., 2022, 2022, 7520632.
  16. Liu, Z.; Ma, X.; Ilyas, I.; Zheng, X.; Luo, S.; Little, P.J.; Kamato, D.; Sahebkar, A.; Wu, W.; Weng, J.; Xu, S. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics, 2021, 11(9), 4502-4515. doi: 10.7150/thno.54498 PMID: 33754074
  17. Ranjbar, G.; Mikhailidis, D.P.; Sahebkar, A. Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: Think out of the box! Metab. Clin. Exp., 2019, 101, 154001.
  18. Yaribeygi, H.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. A review on the effects of new anti-diabetic drugs on platelet function. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(3), 328-334. doi: 10.2174/1871530319666191014110414 PMID: 31612835
  19. Yaribeygi, H.; Maleki, M.; Nasimi, F.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. Sodium-glucose co-transporter 2 inhibitors and hematopoiesis. J. Cell. Physiol., 2022, 237(10), 3778-3787. doi: 10.1002/jcp.30851 PMID: 35951776
  20. Yaribeygi, H.; Sathyapalan, T.; Maleki, M.; Jamialahmadi, T.; Sahebkar, A. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sci., 2020, 240, 117090. doi: 10.1016/j.lfs.2019.117090 PMID: 31765648
  21. Lin, K.J.; Wang, T.J.; Chen, S.D.; Lin, K.L.; Liou, C.W.; Lan, M.Y.; Chuang, Y.C.; Chuang, J.H.; Wang, P.W.; Lee, J.J.; Wang, F.S.; Lin, H.Y.; Lin, T.K. Two birds one stone: The neuroprotective effect of antidiabetic agents on parkinson disease—focus on sodium-glucose cotransporter 2 (SGLT2) inhibitors. Antioxidants, 2021, 10(12), 1935. doi: 10.3390/antiox10121935 PMID: 34943038
  22. Katsenos, A.P.; Davri, A.S.; Simos, Y.V.; Nikas, I.P.; Bekiari, C.; Paschou, S.A. New treatment approaches for Alzheimer’s disease: Preclinical studies and clinical trials centered on antidiabetic drugs. Expert Opin. Invest. Drugs,2022, 31(1), 105-123.
  23. Association, A.D. 2. Classification and diagnosis of diabetes. Diabetes Care, 2017, 40(Suppl. 1), S11-S24. doi: 10.2337/dc17-S005 PMID: 27979889
  24. de Faria Maraschin, J. Classification of diabetes. Adv. Exp. Med. Biol; , 2012, pp. (771)12-9.
  25. O’Neal, K.S.; Johnson, J.L.; Panak, R.L. Recognizing and appropriately treating latent autoimmune diabetes in adults. Diabetes Spectr., 2016, 29(4), 249-252. doi: 10.2337/ds15-0047 PMID: 27899877
  26. Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90. doi: 10.2337/dc14-S081 PMID: 24357215
  27. Zilliox, L.A.; Chadrasekaran, K.; Kwan, J.Y.; Russell, J.W. Diabetes and cognitive impairment. Curr. Diab. Rep., 2016, 16(9), 87. doi: 10.1007/s11892-016-0775-x PMID: 27491830
  28. Moran, C.; Beare, R.; Wang, W.; Callisaya, M.; Srikanth, V. Type 2 diabetes mellitus, brain atrophy, and cognitive decline. Neurology, 2019, 92(8), e823-e830. doi: 10.1212/WNL.0000000000006955 PMID: 30674592
  29. Sun, Y; Ma, C; Sun, H; Wang, H; Peng, W; Zhou, Z Metabolism: a novel shared link between diabetes mellitus and alzheimer’s disease. J. Diabetes Res., 2020, 2020, 4981814. doi: 10.1155/2020/4981814
  30. Hassan, A.; Sharma Kandel, R.; Mishra, R.; Gautam, J.; Alaref, A.; Jahan, N. Diabetes mellitus and Parkinson’s disease: shared pathophysiological links and possible therapeutic implications. Cureus, 2020, 12(8), e9853. doi: 10.7759/cureus.9853 PMID: 32832307
  31. Hogg, E.; Athreya, K.; Basile, C.; Tan, E.E.; Kaminski, J.; Tagliati, M. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with Parkinson’s disease. J. Parkinsons Dis., 2018, 8(2), 259-265. doi: 10.3233/JPD-181305 PMID: 29614702
  32. Sang, Y.M.; Wang, L.J.; Mao, H.X.; Lou, X.Y.; Zhu, Y.J. The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals. Acta Diabetol., 2018, 55(6), 531-539. doi: 10.1007/s00592-018-1111-5 PMID: 29492658
  33. Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodium–glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int., 2018, 94(5), 912-925. doi: 10.1016/j.kint.2018.04.025 PMID: 30021702
  34. Davidson, J.A.; Kuritzky, L. Sodium glucose co-transporter 2 inhibitors and their mechanism for improving glycemia in patients with type 2 diabetes. Postgrad. Med., 2014, 126(6), 33-48. doi: 10.3810/pgm.2014.10.2819 PMID: 25414933
  35. Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodium–glucose cotransporter inhibitors and oxidative stress: An update. J. Cell. Physiol., 2019, 234(4), 3231-3237. doi: 10.1002/jcp.26760 PMID: 30443936
  36. Chao, E.C. SGLT-2 inhibitors: a new mechanism for glycemic control. Clin. Diabetes, 2014, 32(1), 4-11. doi: 10.2337/diaclin.32.1.4 PMID: 26246672
  37. Kern, M.; Klöting, N.; Mark, M.; Mayoux, E.; Klein, T.; Blüher, M. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism, 2016, 65(2), 114-123. doi: 10.1016/j.metabol.2015.10.010 PMID: 26773934
  38. Han, S.; Hagan, D.L.; Taylor, J.R.; Xin, L.; Meng, W.; Biller, S.A.; Wetterau, J.R.; Washburn, W.N.; Whaley, J.M. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes, 2008, 57(6), 1723-1729. doi: 10.2337/db07-1472 PMID: 18356408
  39. Wilding, J.P.H.; Woo, V.; Rohwedder, K.; Sugg, J.; Parikh, S. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes. Metab., 2014, 16(2), 124-136. doi: 10.1111/dom.12187 PMID: 23911013
  40. Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest., 2014, 124(2), 499-508. doi: 10.1172/JCI72227 PMID: 24463454
  41. Chao, E.C.; Henry, R.R. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat. Rev. Drug Discov., 2010, 9(7), 551-559. doi: 10.1038/nrd3180 PMID: 20508640
  42. Clar, C.; Gill, J.A.; Court, R.; Waugh, N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open, 2012, 2(5), e001007. doi: 10.1136/bmjopen-2012-001007 PMID: 23087012
  43. Monica Reddy, R.P.; Inzucchi, S.E. SGLT2 inhibitors in the management of type 2 diabetes. Endocrine, 2016, 53(2), 364-372. doi: 10.1007/s12020-016-0943-4 PMID: 27270407
  44. Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective effect of SGLT2 inhibitors. Molecules, 2021, 26(23), 7213. doi: 10.3390/molecules26237213 PMID: 34885795
  45. Rizzo, M.R.; Di Meo, I.; Polito, R.; Auriemma, M.C.; Gambardella, A.; di Mauro, G.; Capuano, A.; Paolisso, G. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol. Res., 2022, 176, 106062. doi: 10.1016/j.phrs.2022.106062 PMID: 35017046
  46. Rieg, T.; Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia, 2018, 61(10), 2079-2086. doi: 10.1007/s00125-018-4654-7 PMID: 30132033
  47. Tahara, A.; Takasu, T.; Yokono, M.; Imamura, M.; Kurosaki, E. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J. Pharmacol. Sci., 2016, 130(3), 159-169. doi: 10.1016/j.jphs.2016.02.003 PMID: 26970780
  48. Erdogan, M.A.; Yusuf, D.; Christy, J.; Solmaz, V.; Erdogan, A.; Taskiran, E.; Erbas, O. Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol., 2018, 18(1), 81. doi: 10.1186/s12883-018-1086-4 PMID: 29879920
  49. Amin, E.F.; Rifaai, R.A.; Abdel-latif, R.G. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative–inflammatory–apoptotic pathway. Fundam. Clin. Pharmacol., 2020, 34(5), 548-558. doi: 10.1111/fcp.12548 PMID: 32068294
  50. Hayden, M.; Grant, D.; Aroor, A.; DeMarco, V. Empagliflozin ameliorates type 2 diabetes-induced ultrastructural remodeling of the neurovascular unit and neuroglia in the female db/db mouse. Brain Sci., 2019, 9(3), 57. doi: 10.3390/brainsci9030057 PMID: 30866531
  51. Oerter, S.; Förster, C.; Bohnert, M. Validation of sodium/glucose cotransporter proteins in human brain as a potential marker for temporal narrowing of the trauma formation. Int. J. Legal Med., 2019, 133(4), 1107-1114. doi: 10.1007/s00414-018-1893-6 PMID: 30073510
  52. Kim, B; Feldman, EL Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exper. Mol. Med., 2015, 47(3), e149. doi: 10.1038/emm.2015.3
  53. McNay, E.C.; Recknagel, A.K. Reprint of: ‘Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes’. Neurobiol. Learn. Mem., 2011, 96(4), 517-528. doi: 10.1016/j.nlm.2011.11.001 PMID: 22085799
  54. Stanciu, G.D.; Rusu, R.N.; Bild, V.; Filipiuc, L.E.; Tamba, B.I.; Ababei, D.C. Systemic actions of SGLT2 inhibition on chronic mTOR activation as a shared pathogenic mechanism between Alzheimer’s disease and diabetes. Biomedicines, 2021, 9(5), 576. doi: 10.3390/biomedicines9050576 PMID: 34069618
  55. Femminella, G.D.; Livingston, N.R.; Raza, S.; van der Doef, T.; Frangou, E.; Love, S.; Busza, G.; Calsolaro, V.; Carver, S.; Holmes, C.; Ritchie, C.W.; Lawrence, R.M.; McFarlane, B.; Tadros, G.; Ridha, B.H.; Bannister, C.; Walker, Z.; Archer, H.; Coulthard, E.; Underwood, B.; Prasanna, A.; Koranteng, P.; Karim, S.; Junaid, K.; McGuinness, B.; Passmore, A.P.; Nilforooshan, R.; Macharouthu, A.; Donaldson, A.; Thacker, S.; Russell, G.; Malik, N.; Mate, V.; Knight, L.; Kshemendran, S.; Tan, T.; Holscher, C.; Harrison, J.; Brooks, D.J.; Ballard, C.; Edison, P. Does insulin resistance influence neurodegeneration in non-diabetic Alzheimer’s subjects? Alzheimers Res. Ther., 2021, 13(1), 47. doi: 10.1186/s13195-021-00784-w PMID: 33597002
  56. Zhao, W.; Chen, H.; Xu, H.; Moore, E.; Meiri, N.; Quon, M.J.; Alkon, D.L. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem., 1999, 274(49), 34893-34902. doi: 10.1074/jbc.274.49.34893 PMID: 10574963
  57. Zhao, W.Q.; Chen, H.; Quon, M.J.; Alkon, D.L. Insulin and the insulin receptor in experimental models of learning and memory. Eur. J. Pharmacol., 2004, 490(1-3), 71-81. doi: 10.1016/j.ejphar.2004.02.045 PMID: 15094074
  58. Abbott, M.A.; Wells, D.G.; Fallon, J.R. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J. Neurosci., 1999, 19(17), 7300-7308. doi: 10.1523/JNEUROSCI.19-17-07300.1999 PMID: 10460236
  59. Soto, M.; Cai, W.; Konishi, M.; Kahn, C.R. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc. Natl. Acad. Sci. USA, 2019, 116(13), 6379-6384. doi: 10.1073/pnas.1817391116 PMID: 30765523
  60. Choudhury, A.I.; Heffron, H.; Smith, M.A.; Al-Qassab, H.; Xu, A.W.; Selman, C.; Simmgen, M.; Clements, M.; Claret, M.; MacColl, G.; Bedford, D.C.; Hisadome, K.; Diakonov, I.; Moosajee, V.; Bell, J.D.; Speakman, J.R.; Batterham, R.L.; Barsh, G.S.; Ashford, M.L.J.; Withers, D.J. The role of insulin receptor substrate 2 in hypothalamic and β cell function. J. Clin. Invest., 2005, 115(4), 940-950. doi: 10.1172/JCI24445 PMID: 15841180
  61. Grillo, C.A.; Piroli, G.G.; Kaigler, K.F.; Wilson, S.P.; Wilson, M.A.; Reagan, L.P. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav. Brain Res., 2011, 222(1), 230-235. doi: 10.1016/j.bbr.2011.03.052 PMID: 21458499
  62. Fernandez, A.M.; Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci., 2012, 13(4), 225-239. doi: 10.1038/nrn3209 PMID: 22430016
  63. Spinelli, M.; Fusco, S.; Grassi, C. Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline. Front. Neurosci., 2019, 13, 788. doi: 10.3389/fnins.2019.00788 PMID: 31417349
  64. Kitagishi, Y; Kobayashi, M; Kikuta, K; Matsuda, S. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depres. Res. Treat., 2012, 2012, 752563.
  65. Inkster, B.; Zai, G.; Lewis, G.; Miskowiak, K.W. GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Transl. Psychiatry, 2018, 8(1), 216. doi: 10.1038/s41398-018-0270-z PMID: 29317594
  66. Rippin, I.; Eldar-Finkelman, H. Mechanisms and therapeutic implications of GSK-3 in treating neurodegeneration. Cells, 2021, 10(2), 262. doi: 10.3390/cells10020262 PMID: 33572709
  67. Van Der Heide, L.P.; Kamal, A.; Artola, A.; Gispen, W.H.; Ramakers, G.M.J. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J. Neurochem., 2005, 94(4), 1158-1166. doi: 10.1111/j.1471-4159.2005.03269.x PMID: 16092951
  68. Grillo, C.A.; Piroli, G.G.; Lawrence, R.C.; Wrighten, S.A.; Green, A.J.; Wilson, S.P.; Sakai, R.R.; Kelly, S.J.; Wilson, M.A.; Mott, D.D.; Reagan, L.P. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes, 2015, 64(11), 3927-3936. doi: 10.2337/db15-0596 PMID: 26216852
  69. Costello, D.A.; Claret, M.; Al-Qassab, H.; Plattner, F.; Irvine, E.E.; Choudhury, A.I.; Giese, K.P.; Withers, D.J.; Pedarzani, P. Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One, 2012, 7(2), e31124. doi: 10.1371/journal.pone.0031124 PMID: 22383997
  70. Sa-nguanmoo, P.; Tanajak, P.; Kerdphoo, S.; Jaiwongkam, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol. Appl. Pharmacol., 2017, 333, 43-50. doi: 10.1016/j.taap.2017.08.005 PMID: 28807765
  71. Hierro-Bujalance, C.; Infante-Garcia, C.; del Marco, A.; Herrera, M.; Carranza-Naval, M.J.; Suarez, J.; Alves-Martinez, P.; Lubian-Lopez, S.; Garcia-Alloza, M. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. Alzheimers Res. Ther., 2020, 12(1), 40. doi: 10.1186/s13195-020-00607-4 PMID: 32264944
  72. Ali, L. The neuroprotective effects of SGLT2 or Nox1/Nox4 selective inhibitors on Alzheimer’s-Like symptoms development in diabetic mice. Molecules, 2021, 26(23), 7213.
  73. Kullmann, S.; Hummel, J.; Wagner, R.; Dannecker, C.; Vosseler, A.; Fritsche, L. Empagliflozin improves insulin sensitivity of the hypothalamus in humans with prediabetes: A randomized, double-blind, placebo-controlled, phase 2 Trial. Diabetes Care, 2021, 45(2), 398-406. PMID: 34716213
  74. Yaribeygi, H; Panahi, Y; Javadi, B; Sahebkar, A the underlying role of oxidative stress in neurodegeneration: A mechanistic review. CNS Neurol. Disord.-Drug Target, 2018, 17(3), 207-215. doi: 10.2174/1871527317666180425122557
  75. Hajjar, I.; Hayek, S.S.; Goldstein, F.C.; Martin, G.; Jones, D.P.; Quyyumi, A. Oxidative stress predicts cognitive decline with aging in healthy adults: an observational study. J. Neuroinflammation, 2018, 15(1), 17. doi: 10.1186/s12974-017-1026-z PMID: 29338747
  76. Perry, N.; Martin, L.; Rosenfeldt, F.; Ou, R.; Rowsell, R.; Stough, C. Understanding the relationship between oxidative stress and cognition in the elderly: targets for nutraceutical interventions. Nutraceuticals in Brain Health and Beyond; Elsevier, 2021, pp. 57-80. doi: 10.1016/B978-0-12-820593-8.00006-9
  77. Tamagno, E.; Guglielmotto, M.; Vasciaveo, V.; Tabaton, M. Oxidative stress and beta amyloid in Alzheimer’s disease. Which comes first: The chicken or the egg? Antioxidants, 2021, 10(9), 1479. doi: 10.3390/antiox10091479 PMID: 34573112
  78. Nunomura, A.; Perry, G.; Pappolla, M.A.; Friedland, R.P.; Hirai, K.; Chiba, S.; Smith, M.A. Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J. Neuropathol. Exp. Neurol., 2000, 59(11), 1011-1017. doi: 10.1093/jnen/59.11.1011 PMID: 11089579
  79. Porcellotti, S.; Fanelli, F.; Fracassi, A.; Sepe, S.; Cecconi, F.; Bernardi, C. Oxidative stress during the progression of β-amyloid pathology in the neocortex of the Tg2576 mouse model of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 967203. doi: 10.1155/2015/967203
  80. Nkpaa, K.W.; Onyeso, G.I. Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats. Neurosci. Lett., 2018, 682, 92-99. doi: 10.1016/j.neulet.2018.06.023 PMID: 29908257
  81. Kawanami, D.; Matoba, K.; Takeda, Y.; Nagai, Y.; Akamine, T.; Yokota, T.; Sango, K.; Utsunomiya, K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int. J. Mol. Sci., 2017, 18(5), 1083. doi: 10.3390/ijms18051083 PMID: 28524098
  82. Osorio, H.; Coronel, I.; Arellano, A.; Pacheco, U.; Bautista, R.; Franco, M. Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats. Oxid. Med. Cell. Longev., 2012, 2012, 542042. doi: 10.1155/2012/542042
  83. Oelze, M.; Kröller-Schön, S.; Welschof, P.; Jansen, T.; Hausding, M.; Mikhed, Y.; Stamm, P.; Mader, M.; Zinßius, E.; Agdauletova, S.; Gottschlich, A.; Steven, S.; Schulz, E.; Bottari, S.P.; Mayoux, E.; Münzel, T.; Daiber, A. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One, 2014, 9(11), e112394. doi: 10.1371/journal.pone.0112394 PMID: 25402275
  84. Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82. doi: 10.1080/01616412.2016.1251711 PMID: 27809706
  85. Sawicki, K.T.; Ben-Sahra, I.; McNally, E.M. SGLT2 Inhibition on cardiac mitochondrial function: Searching for a sweet spot. Am. Heart Assoc., 2021, e021949.
  86. Maejima, Y. SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front. Cardiovasc. Med., 2020, 6, 186. doi: 10.3389/fcvm.2019.00186 PMID: 31970162
  87. Takagi, S.; Li, J.; Takagaki, Y.; Kitada, M.; Nitta, K.; Takasu, T.; Kanasaki, K.; Koya, D. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J. Diabetes Investig., 2018, 9(5), 1025-1032. doi: 10.1111/jdi.12802 PMID: 29352520
  88. Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol., 2019, Feb 234(2), 1310-1312. doi: 10.1002/jcp.27164
  89. Sugizaki, T.; Zhu, S.; Guo, G.; Matsumoto, A.; Zhao, J.; Endo, M.; Horiguchi, H.; Morinaga, J.; Tian, Z.; Kadomatsu, T.; Miyata, K.; Itoh, H.; Oike, Y. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech. Dis., 2017, 3(1), 12. doi: 10.1038/s41514-017-0012-0 PMID: 28900540
  90. Shin, S.J.; Chung, S.; Kim, S.J.; Lee, E.M.; Yoo, Y.H.; Kim, J.W.; Ahn, Y.B.; Kim, E.S.; Moon, S.D.; Kim, M.J.; Ko, S.H. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One, 2016, 11(11), e0165703. doi: 10.1371/journal.pone.0165703 PMID: 27802313
  91. Iannantuoni, F.; M de Marañon, A.; Diaz-Morales, N.; Falcon, R.; Bañuls, C.; Abad-Jimenez, Z.; Victor, V.M.; Hernandez-Mijares, A.; Rovira-Llopis, S. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J. Clin. Med., 2019, 8(11), 1814. doi: 10.3390/jcm8111814 PMID: 31683785
  92. Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol., 2014, 13(1), 148. doi: 10.1186/s12933-014-0148-1 PMID: 25344694
  93. Wang, S.; Jiao, F.; Border, J.J.; Fang, X.; Crumpler, R.F.; Liu, Y.; Zhang, H.; Jefferson, J.; Guo, Y.; Elliott, P.S.; Thomas, K.N.; Strong, L.B.; Urvina, A.H.; Zheng, B.; Rijal, A.; Smith, S.V.; Yu, H.; Roman, R.J.; Fan, F. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am. J. Physiol. Heart Circ. Physiol., 2022, 322(2), H246-H259. doi: 10.1152/ajpheart.00438.2021 PMID: 34951541
  94. Faraco, G.; Sugiyama, Y.; Lane, D.; Garcia-Bonilla, L.; Chang, H.; Santisteban, M.M.; Racchumi, G.; Murphy, M.; Van Rooijen, N.; Anrather, J.; Iadecola, C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest., 2016, 126(12), 4674-4689. doi: 10.1172/JCI86950 PMID: 27841763
  95. Miyachi, Y.; Tsuchiya, K.; Shiba, K.; Mori, K.; Komiya, C.; Ogasawara, N.; Ogawa, Y. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition. Sci. Rep., 2018, 8(1), 16113. doi: 10.1038/s41598-018-34305-x PMID: 30382157
  96. Adelantado-Renau, M.; Beltran-Valls, M.R.; Moliner-Urdiales, D. Inflammation and cognition in children and adolescents: A call for action. Front Pediatr., 2020, 8, 583. doi: 10.3389/fped.2020.00583 PMID: 33014950
  97. Gorelick, P.B. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci., 2010, 1207(1), 155-162. doi: 10.1111/j.1749-6632.2010.05726.x PMID: 20955439
  98. Hakim, A.M. A proposed hypothesis on dementia: Inflammation, small vessel disease, and hypoperfusion is the sequence that links all harmful lifestyles to cognitive impairment. Front. Aging Neurosci., 2021, 13, 679837. doi: 10.3389/fnagi.2021.679837 PMID: 33994998
  99. Strawbridge, R.; Carter, R.; Saldarini, F.; Tsapekos, D.; Young, A.H. Inflammatory biomarkers and cognitive functioning in individuals with euthymic bipolar disorder: exploratory study. BJPsych Open, 2021, 7(4), e126. doi: 10.1192/bjo.2021.966 PMID: 36043690
  100. Satirapoj, B. Sodium-glucose cotransporter 2 inhibitors with renoprotective effects. Kidney Dis., 2017, 3(1), 24-32. doi: 10.1159/000471765 PMID: 28785561
  101. Pirklbauer, M.; Bernd, M.; Fuchs, L.; Staudinger, P.; Corazza, U.; Leierer, J.; Mayer, G.; Schramek, H. Empagliflozin inhibits basal and IL-1β-mediated MCP-1/CCL2 and endothelin-1 expression in human proximal tubular cells. Int. J. Mol. Sci., 2020, 21(21), 8189. doi: 10.3390/ijms21218189 PMID: 33139635
  102. Han, J.H.; Oh, T.J.; Lee, G.; Maeng, H.J.; Lee, D.H.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lee, H.S.; Park, K.S.; Kim, Y.B.; Lim, S. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet. Diabetologia, 2017, 60(2), 364-376. doi: 10.1007/s00125-016-4158-2 PMID: 27866224
  103. Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204. doi: 10.1152/ajprenal.00520.2013 PMID: 24226524
  104. Liao, X.; Wang, X.; Li, H.; Li, L.; Zhang, G.; Yang, M.; Yuan, L.; Liu, H.; Yang, G.; Gao, L. Sodium-glucose cotransporter 2 (SGLT2) inhibitor increases circulating zinc-a2-glycoprotein levels in patients with type 2 diabetes. Sci. Rep., 2016, 6(1), 32887. doi: 10.1038/srep32887 PMID: 27611858
  105. Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678. doi: 10.1038/nature11729 PMID: 23254930
  106. Kim, S.R.; Lee, S.G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; Oh, C.M.; Jeon, J.Y.; Gee, H.Y.; Kim, J.H.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Lee, M.S.; Yu, J.W.; Cho, J.W.; Kim, J.S.; Lee, Y. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun., 2020, 11(1), 2127. doi: 10.1038/s41467-020-15983-6 PMID: 32358544
  107. Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol., 2018, 36(1), 489-517. doi: 10.1146/annurev-immunol-042617-053010 PMID: 29400998
  108. Li, J.; Wang, B.; Wu, H.; Yu, Y.; Xue, G.; Hou, Y. 17β-estradiol attenuates ketamine-induced neuroapoptosis and persistent cognitive deficits in the developing brain. Brain Res., 2014, 1593, 30-39. doi: 10.1016/j.brainres.2014.09.013 PMID: 25234726
  109. Han, D.; Jin, J.; Fang, H.; Xu, G. Long-term action of propofol on cognitive function and hippocampal neuroapoptosis in neonatal rats. Int. J. Clin. Exp. Med., 2015, 8(7), 10696-10704. PMID: 26379861
  110. Hua, F.Z.; Ying, J.; Zhang, J.; Wang, X.F.; Hu, Y.H.; Liang, Y.P.; Liu, Q.; Xu, G.H. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int. J. Mol. Med., 2016, 38(4), 1271-1280. doi: 10.3892/ijmm.2016.2715 PMID: 27572468
  111. Kwon, B.S.; Kim, J.M.; Park, S.K.; Kang, J.Y.; Kang, J.E.; Lee, C.J. Chronic alcohol exposure induced neuroapoptosis: Diminishing effect of ethyl acetate fraction from Aralia elata. Oxid. Med. Cell. Longev., 2019, 2019, 7849876.
  112. Man, Y-G.; Zhou, R-G.; Zhao, B. Efficacy of rutin in inhibiting neuronal apoptosis and cognitive disturbances in sevoflurane or propofol exposed neonatal mice. Int. J. Clin. Exp. Med., 2015, 8(8), 14397-14409. PMID: 26550427
  113. Wiciński, M.; Wódkiewicz, E.; Górski, K.; Walczak, M.; Malinowski, B. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: focus on Alzheimer’s disease and ischemia-related brain injury. Pharmaceuticals (Basel), 2020, 13(11), 379. doi: 10.3390/ph13110379 PMID: 33187206
  114. Yaribeygi, H.; Lhaf, F.; Sathyapalan, T.; Sahebkar, A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sci., 2019, 231, 116538. doi: 10.1016/j.lfs.2019.06.013 PMID: 31176776
  115. Shibusawa, R.; Yamada, E.; Okada, S.; Nakajima, Y.; Bastie, C.C.; Maeshima, A.; Kaira, K.; Yamada, M. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci. Rep., 2019, 9(1), 9887. doi: 10.1038/s41598-019-46402-6 PMID: 31285506
  116. Staels, B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am. J. Cardiol., 2017, 120(1), S28-S36. doi: 10.1016/j.amjcard.2017.05.013 PMID: 28606341
  117. Lee, W.C.; Chou, C.A.; Lee, L.C.; Chau, Y.Y.; Chiang, Y.W.; Chen, C.H.; Chen, J-B. J-B. FP416SGLT2 inhibitor protected renal proximal tubular cells from apoptosis by reducing intra-renal lipotoxicity. Nephrol. Dial. Transplant., 2018, 33(S1), i175-i176. doi: 10.1093/ndt/gfy104.FP416
  118. Saito, T.; Okada, S.; Yamada, E.; Shimoda, Y.; Osaki, A.; Tagaya, Y.; Shibusawa, R.; Okada, J.; Yamada, M. Effect of dapagliflozin on colon cancer cell Rapid Communication. Endocr. J., 2015, 62(12), 1133-1137. doi: 10.1507/endocrj.EJ15-0396 PMID: 26522271
  119. Karlsson, D.; Ahnmark, A.; Sabirsh, A.; Andréasson, A.C.; Gennemark, P.; Sandinge, A.S.; Chen, L.; Tyrberg, B.; Lindén, D.; Sörhede Winzell, M. Inhibition of SGLT2 preserves function and promotes proliferation of human islets cells in vivo in diabetic mice. Biomedicines, 2022, 10(2), 203. doi: 10.3390/biomedicines10020203 PMID: 35203411
  120. Constantinides, V.C.; Paraskevas, G.P.; Emmanouilidou, E.; Petropoulou, O.; Bougea, A.; Vekrellis, K.; Evdokimidis, I.; Stamboulis, E.; Kapaki, E. CSF biomarkers β-amyloid, tau proteins and a-synuclein in the differential diagnosis of Parkinson-plus syndromes. J. Neurol. Sci., 2017, 382, 91-95. doi: 10.1016/j.jns.2017.09.039 PMID: 29111028
  121. Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci., 2015, 9, 124. doi: 10.3389/fncel.2015.00124 PMID: 25914621
  122. Chen, N.C.; Chen, H.L.; Li, S.H.; Chang, Y.H.; Chen, M.H.; Tsai, N.W.; Yu, C.C.; Yang, S.Y.; Lu, C.H.; Lin, W.C. Plasma Levels of α-synuclein, Aβ-40 and T-tau as biomarkers to predict cognitive impairment in Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 112. doi: 10.3389/fnagi.2020.00112 PMID: 32410983
  123. Twohig, D.; Nielsen, H.M. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 23. doi: 10.1186/s13024-019-0320-x PMID: 31186026
  124. Ponce-López, T.; Sorsby-Vargas, A.M.; Bocanegra-López, A.P.; Luna-Muñoz, J.; Ontiveros-Torres, M.A.; Villanueva-Fierro, I. Diabetes Mellitus and Amyloid Beta Protein Pathology in Dementia; In: Amyloid Diseases; Dmitry Kurouski, edt; 2019. doi: 10.5772/intechopen.84473
  125. Pablo-Fernández, E.; Courtney, R.; Rockliffe, A.; Gentleman, S.; Holton, J.L.; Warner, T.T. Faster disease progression in Parkinson’s disease with type 2 diabetes is not associated with increased α-synuclein, tau, amyloid-β or vascular pathology. Neuropathol. Appl. Neurobiol., 2021, 47(7), 1080-1091. doi: 10.1111/nan.12728 PMID: 33969516
  126. Sim, A.Y.; Barua, S.; Kim, J.Y.; Lee, Y.; Lee, J.E. Role of DPP-4 and SGLT2 inhibitors connected to Alzheimer disease in type 2 diabetes mellitus. Front. Neurosci., 2021, 15, 708547. doi: 10.3389/fnins.2021.708547 PMID: 34489627
  127. Tomita, I; Kume, S; Sugahara, S; Osawa, N; Yamahara, K; Yasuda-Yamahara, M SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metabol., 2020, 32(3), 404-419. doi: 10.1016/j.cmet.2020.06.020
  128. Caccamo, A.; Majumder, S.; Richardson, A.; Strong, R.; Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments. J. Biol. Chem., 2010, 285(17), 13107-13120. doi: 10.1074/jbc.M110.100420 PMID: 20178983
  129. Ferrer, I.; Barrachina, M.; Puig, B. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol., 2002, 104(6), 583-591. doi: 10.1007/s00401-002-0587-8 PMID: 12410379
  130. Khan, T.; Khan, S.; Akhtar, M.; Ali, J.; Najmi, A.K. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem. Int., 2021, 150, 105158. doi: 10.1016/j.neuint.2021.105158 PMID: 34391818
  131. Alafnan, A. Biochemical interaction analysis of natural SGLT2 inhibitors with Alzheimer targets: A computational approach. J. Biochem. Technol., 2020, 11(4), 73-84.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers