Cognitive Benefits of Sodium-Glucose Co-Transporters-2 Inhibitors in the Diabetic Milieu
- Authors: Yaribeygi H.1, Maleki M.2, Sathyapalan T.3, Rizzo M.4, Sahebkar A.5
-
Affiliations:
- Research centre of physiology, Semnan University of Medical Sciences
- Chronic kidney disease research centre, Shahid Beheshti University
- Department of Diabetes and Endocrinology,, University of Hull
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo
- Department of Medical Biotechnology, Mashhad University of Medical Sciences
- Issue: Vol 31, No 2 (2024)
- Pages: 138-151
- Section: Anti-Infectives and Infectious Diseases
- URL: https://jdigitaldiagnostics.com/0929-8673/article/view/644618
- DOI: https://doi.org/10.2174/0929867330666230202163513
- ID: 644618
Cite item
Full Text
Abstract
Patients with diabetes are at higher risk of cognitive impairment and memory loss than the normal population. Thus, using hypoglycemic agents to improve brain function is important for diabetic patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are a class of therapeutic agents used in the management of diabetes that has some pharmacologic effects enabling them to fight against the onset and progress of memory deficits. Although the exact mediating pathways are not well understood, emerging evidence suggests that SGLT2 inhibition is associated with improved brain function. This study reviewed the possible mechanisms and provided evidence suggesting SGLT2 inhibitors could ameliorate cognitive deficits.
About the authors
Habib Yaribeygi
Research centre of physiology, Semnan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Mina Maleki
Chronic kidney disease research centre, Shahid Beheshti University
Email: info@benthamscience.net
Thozhukat Sathyapalan
Department of Diabetes and Endocrinology,, University of Hull
Author for correspondence.
Email: info@benthamscience.net
Manfredi Rizzo
Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo
Email: info@benthamscience.net
Amirhossein Sahebkar
Department of Medical Biotechnology, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Magliano, DJ; Islam, RM; Barr, EL; Gregg, EW; Pavkov, ME; Harding, JL Trends in incidence of total or type 2 diabetes: systematic review. BMJ, 2019, 366, l5003.
- Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Primers, 2019, 5(1), 1-18. doi: 10.1038/s41572-018-0051-2 PMID: 30617281
- Kioskli, K.; Scott, W.; Winkley, K.; Kylakos, S.; McCracken, L.M. Psychosocial factors in painful diabetic neuropathy: a systematic review of treatment trials and survey studies. Pain Med., 2019, 20(9), 1756-1773. doi: 10.1093/pm/pnz071 PMID: 30980660
- Rojas, D.R.; Kuner, R.; Agarwal, N. Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy. J. Mol. Med. (Berl.), 2019, 97(6), 845-854. doi: 10.1007/s00109-019-01781-1 PMID: 30949723
- Zhang, X.; Jiang, X.; Han, S.; Liu, Q.; Zhou, J. Type 2 diabetes mellitus is associated with the risk of cognitive impairment: a meta-analysis. J. Mol. Neurosci., 2019, 68(2), 251-260. doi: 10.1007/s12031-019-01290-3 PMID: 30949957
- Albai, O.; Frandes, M.; Timar, R.; Roman, D.; Timar, B. Risk factors for developing dementia in type 2 diabetes mellitus patients with mild cognitive impairment. Neuropsychiatr. Dis. Treat., 2019, 15, 167-175. doi: 10.2147/NDT.S189905 PMID: 30655669
- Chaytor, N.S.; Barbosa-Leiker, C.; Ryan, C.M.; Germine, L.T.; Hirsch, I.B.; Weinstock, R.S. Clinically significant cognitive impairment in older adults with type 1 diabetes. J. Diabetes Complicat., 2019, 33(1), 91-97. doi: 10.1016/j.jdiacomp.2018.04.003 PMID: 29728302
- Sekhon, H.; Allali, G.; Launay, C.P.; Barden, J.; Szturm, T.; Liu-Ambrose, T.; Chester, V.L.; Wong, C.H.; Beauchet, O. Motoric cognitive risk syndrome, incident cognitive impairment and morphological brain abnormalities: Systematic review and meta-analysis. Maturitas, 2019, 123, 45-54. doi: 10.1016/j.maturitas.2019.02.006 PMID: 31027677
- Toyoshima, K.; Kako, Y.; Toyomaki, A.; Shimizu, Y.; Tanaka, T.; Nakagawa, S.; Inoue, T.; Martinez-Aran, A.; Vieta, E.; Kusumi, I. Associations between cognitive impairment and quality of life in euthymic bipolar patients. Psychiatry Res., 2019, 271, 510-515. doi: 10.1016/j.psychres.2018.11.061 PMID: 30551083
- McWhirter, L.; Ritchie, C.; Stone, J.; Carson, A. Functional cognitive disorders: a systematic review. Lancet Psychiatry, 2020, 7(2), 191-207. doi: 10.1016/S2215-0366(19)30405-5 PMID: 31732482
- Benbow, A.A.; Anderson, P.L. Long-term improvements in probability and cost biases following brief cognitive behavioral therapy for social anxiety disorder. Cognit. Ther. Res., 2019, 43(2), 412-418. doi: 10.1007/s10608-018-9947-0
- Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. Mechanistic effects of SGLT2 inhibition on blood pressure in diabetes. Diabetes Metab. Syndr., 2019, 13(2), 1679-1683. doi: 10.1016/j.dsx.2019.03.031 PMID: 31336541
- Yaribeygi, H.; Butler, A.E.; Atkin, S.L.; Katsiki, N.; Sahebkar, A. Sodiumglucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. J. Cell. Physiol., 2019, 234(1), 223-230. doi: 10.1002/jcp.26851 PMID: 30076706
- Yaribeygi, H.; Ashrafizadeh, M.; Henney, N.C.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacol. Res., 2020, 152, 104611. doi: 10.1016/j.phrs.2019.104611 PMID: 31863868
- Akbari, A; Rafiee, M; Sathyapalan, T; Sahebkar, A. Impacts of sodium/glucose cotransporter-2 inhibitors on circulating uric acid concentrations: A systematic review and meta-analysis. J. Diabetes Res., 2022, 2022, 7520632.
- Liu, Z.; Ma, X.; Ilyas, I.; Zheng, X.; Luo, S.; Little, P.J.; Kamato, D.; Sahebkar, A.; Wu, W.; Weng, J.; Xu, S. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics, 2021, 11(9), 4502-4515. doi: 10.7150/thno.54498 PMID: 33754074
- Ranjbar, G.; Mikhailidis, D.P.; Sahebkar, A. Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: Think out of the box! Metab. Clin. Exp., 2019, 101, 154001.
- Yaribeygi, H.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. A review on the effects of new anti-diabetic drugs on platelet function. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(3), 328-334. doi: 10.2174/1871530319666191014110414 PMID: 31612835
- Yaribeygi, H.; Maleki, M.; Nasimi, F.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. Sodium-glucose co-transporter 2 inhibitors and hematopoiesis. J. Cell. Physiol., 2022, 237(10), 3778-3787. doi: 10.1002/jcp.30851 PMID: 35951776
- Yaribeygi, H.; Sathyapalan, T.; Maleki, M.; Jamialahmadi, T.; Sahebkar, A. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sci., 2020, 240, 117090. doi: 10.1016/j.lfs.2019.117090 PMID: 31765648
- Lin, K.J.; Wang, T.J.; Chen, S.D.; Lin, K.L.; Liou, C.W.; Lan, M.Y.; Chuang, Y.C.; Chuang, J.H.; Wang, P.W.; Lee, J.J.; Wang, F.S.; Lin, H.Y.; Lin, T.K. Two birds one stone: The neuroprotective effect of antidiabetic agents on parkinson diseasefocus on sodium-glucose cotransporter 2 (SGLT2) inhibitors. Antioxidants, 2021, 10(12), 1935. doi: 10.3390/antiox10121935 PMID: 34943038
- Katsenos, A.P.; Davri, A.S.; Simos, Y.V.; Nikas, I.P.; Bekiari, C.; Paschou, S.A. New treatment approaches for Alzheimers disease: Preclinical studies and clinical trials centered on antidiabetic drugs. Expert Opin. Invest. Drugs,2022, 31(1), 105-123.
- Association, A.D. 2. Classification and diagnosis of diabetes. Diabetes Care, 2017, 40(Suppl. 1), S11-S24. doi: 10.2337/dc17-S005 PMID: 27979889
- de Faria Maraschin, J. Classification of diabetes. Adv. Exp. Med. Biol; , 2012, pp. (771)12-9.
- ONeal, K.S.; Johnson, J.L.; Panak, R.L. Recognizing and appropriately treating latent autoimmune diabetes in adults. Diabetes Spectr., 2016, 29(4), 249-252. doi: 10.2337/ds15-0047 PMID: 27899877
- Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90. doi: 10.2337/dc14-S081 PMID: 24357215
- Zilliox, L.A.; Chadrasekaran, K.; Kwan, J.Y.; Russell, J.W. Diabetes and cognitive impairment. Curr. Diab. Rep., 2016, 16(9), 87. doi: 10.1007/s11892-016-0775-x PMID: 27491830
- Moran, C.; Beare, R.; Wang, W.; Callisaya, M.; Srikanth, V. Type 2 diabetes mellitus, brain atrophy, and cognitive decline. Neurology, 2019, 92(8), e823-e830. doi: 10.1212/WNL.0000000000006955 PMID: 30674592
- Sun, Y; Ma, C; Sun, H; Wang, H; Peng, W; Zhou, Z Metabolism: a novel shared link between diabetes mellitus and alzheimers disease. J. Diabetes Res., 2020, 2020, 4981814. doi: 10.1155/2020/4981814
- Hassan, A.; Sharma Kandel, R.; Mishra, R.; Gautam, J.; Alaref, A.; Jahan, N. Diabetes mellitus and Parkinsons disease: shared pathophysiological links and possible therapeutic implications. Cureus, 2020, 12(8), e9853. doi: 10.7759/cureus.9853 PMID: 32832307
- Hogg, E.; Athreya, K.; Basile, C.; Tan, E.E.; Kaminski, J.; Tagliati, M. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with Parkinsons disease. J. Parkinsons Dis., 2018, 8(2), 259-265. doi: 10.3233/JPD-181305 PMID: 29614702
- Sang, Y.M.; Wang, L.J.; Mao, H.X.; Lou, X.Y.; Zhu, Y.J. The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals. Acta Diabetol., 2018, 55(6), 531-539. doi: 10.1007/s00592-018-1111-5 PMID: 29492658
- Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodiumglucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int., 2018, 94(5), 912-925. doi: 10.1016/j.kint.2018.04.025 PMID: 30021702
- Davidson, J.A.; Kuritzky, L. Sodium glucose co-transporter 2 inhibitors and their mechanism for improving glycemia in patients with type 2 diabetes. Postgrad. Med., 2014, 126(6), 33-48. doi: 10.3810/pgm.2014.10.2819 PMID: 25414933
- Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodiumglucose cotransporter inhibitors and oxidative stress: An update. J. Cell. Physiol., 2019, 234(4), 3231-3237. doi: 10.1002/jcp.26760 PMID: 30443936
- Chao, E.C. SGLT-2 inhibitors: a new mechanism for glycemic control. Clin. Diabetes, 2014, 32(1), 4-11. doi: 10.2337/diaclin.32.1.4 PMID: 26246672
- Kern, M.; Klöting, N.; Mark, M.; Mayoux, E.; Klein, T.; Blüher, M. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism, 2016, 65(2), 114-123. doi: 10.1016/j.metabol.2015.10.010 PMID: 26773934
- Han, S.; Hagan, D.L.; Taylor, J.R.; Xin, L.; Meng, W.; Biller, S.A.; Wetterau, J.R.; Washburn, W.N.; Whaley, J.M. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes, 2008, 57(6), 1723-1729. doi: 10.2337/db07-1472 PMID: 18356408
- Wilding, J.P.H.; Woo, V.; Rohwedder, K.; Sugg, J.; Parikh, S. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes. Metab., 2014, 16(2), 124-136. doi: 10.1111/dom.12187 PMID: 23911013
- Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest., 2014, 124(2), 499-508. doi: 10.1172/JCI72227 PMID: 24463454
- Chao, E.C.; Henry, R.R. SGLT2 inhibition a novel strategy for diabetes treatment. Nat. Rev. Drug Discov., 2010, 9(7), 551-559. doi: 10.1038/nrd3180 PMID: 20508640
- Clar, C.; Gill, J.A.; Court, R.; Waugh, N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open, 2012, 2(5), e001007. doi: 10.1136/bmjopen-2012-001007 PMID: 23087012
- Monica Reddy, R.P.; Inzucchi, S.E. SGLT2 inhibitors in the management of type 2 diabetes. Endocrine, 2016, 53(2), 364-372. doi: 10.1007/s12020-016-0943-4 PMID: 27270407
- Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective effect of SGLT2 inhibitors. Molecules, 2021, 26(23), 7213. doi: 10.3390/molecules26237213 PMID: 34885795
- Rizzo, M.R.; Di Meo, I.; Polito, R.; Auriemma, M.C.; Gambardella, A.; di Mauro, G.; Capuano, A.; Paolisso, G. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol. Res., 2022, 176, 106062. doi: 10.1016/j.phrs.2022.106062 PMID: 35017046
- Rieg, T.; Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia, 2018, 61(10), 2079-2086. doi: 10.1007/s00125-018-4654-7 PMID: 30132033
- Tahara, A.; Takasu, T.; Yokono, M.; Imamura, M.; Kurosaki, E. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J. Pharmacol. Sci., 2016, 130(3), 159-169. doi: 10.1016/j.jphs.2016.02.003 PMID: 26970780
- Erdogan, M.A.; Yusuf, D.; Christy, J.; Solmaz, V.; Erdogan, A.; Taskiran, E.; Erbas, O. Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol., 2018, 18(1), 81. doi: 10.1186/s12883-018-1086-4 PMID: 29879920
- Amin, E.F.; Rifaai, R.A.; Abdel-latif, R.G. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidativeinflammatoryapoptotic pathway. Fundam. Clin. Pharmacol., 2020, 34(5), 548-558. doi: 10.1111/fcp.12548 PMID: 32068294
- Hayden, M.; Grant, D.; Aroor, A.; DeMarco, V. Empagliflozin ameliorates type 2 diabetes-induced ultrastructural remodeling of the neurovascular unit and neuroglia in the female db/db mouse. Brain Sci., 2019, 9(3), 57. doi: 10.3390/brainsci9030057 PMID: 30866531
- Oerter, S.; Förster, C.; Bohnert, M. Validation of sodium/glucose cotransporter proteins in human brain as a potential marker for temporal narrowing of the trauma formation. Int. J. Legal Med., 2019, 133(4), 1107-1114. doi: 10.1007/s00414-018-1893-6 PMID: 30073510
- Kim, B; Feldman, EL Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exper. Mol. Med., 2015, 47(3), e149. doi: 10.1038/emm.2015.3
- McNay, E.C.; Recknagel, A.K. Reprint of: Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol. Learn. Mem., 2011, 96(4), 517-528. doi: 10.1016/j.nlm.2011.11.001 PMID: 22085799
- Stanciu, G.D.; Rusu, R.N.; Bild, V.; Filipiuc, L.E.; Tamba, B.I.; Ababei, D.C. Systemic actions of SGLT2 inhibition on chronic mTOR activation as a shared pathogenic mechanism between Alzheimers disease and diabetes. Biomedicines, 2021, 9(5), 576. doi: 10.3390/biomedicines9050576 PMID: 34069618
- Femminella, G.D.; Livingston, N.R.; Raza, S.; van der Doef, T.; Frangou, E.; Love, S.; Busza, G.; Calsolaro, V.; Carver, S.; Holmes, C.; Ritchie, C.W.; Lawrence, R.M.; McFarlane, B.; Tadros, G.; Ridha, B.H.; Bannister, C.; Walker, Z.; Archer, H.; Coulthard, E.; Underwood, B.; Prasanna, A.; Koranteng, P.; Karim, S.; Junaid, K.; McGuinness, B.; Passmore, A.P.; Nilforooshan, R.; Macharouthu, A.; Donaldson, A.; Thacker, S.; Russell, G.; Malik, N.; Mate, V.; Knight, L.; Kshemendran, S.; Tan, T.; Holscher, C.; Harrison, J.; Brooks, D.J.; Ballard, C.; Edison, P. Does insulin resistance influence neurodegeneration in non-diabetic Alzheimers subjects? Alzheimers Res. Ther., 2021, 13(1), 47. doi: 10.1186/s13195-021-00784-w PMID: 33597002
- Zhao, W.; Chen, H.; Xu, H.; Moore, E.; Meiri, N.; Quon, M.J.; Alkon, D.L. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem., 1999, 274(49), 34893-34902. doi: 10.1074/jbc.274.49.34893 PMID: 10574963
- Zhao, W.Q.; Chen, H.; Quon, M.J.; Alkon, D.L. Insulin and the insulin receptor in experimental models of learning and memory. Eur. J. Pharmacol., 2004, 490(1-3), 71-81. doi: 10.1016/j.ejphar.2004.02.045 PMID: 15094074
- Abbott, M.A.; Wells, D.G.; Fallon, J.R. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J. Neurosci., 1999, 19(17), 7300-7308. doi: 10.1523/JNEUROSCI.19-17-07300.1999 PMID: 10460236
- Soto, M.; Cai, W.; Konishi, M.; Kahn, C.R. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc. Natl. Acad. Sci. USA, 2019, 116(13), 6379-6384. doi: 10.1073/pnas.1817391116 PMID: 30765523
- Choudhury, A.I.; Heffron, H.; Smith, M.A.; Al-Qassab, H.; Xu, A.W.; Selman, C.; Simmgen, M.; Clements, M.; Claret, M.; MacColl, G.; Bedford, D.C.; Hisadome, K.; Diakonov, I.; Moosajee, V.; Bell, J.D.; Speakman, J.R.; Batterham, R.L.; Barsh, G.S.; Ashford, M.L.J.; Withers, D.J. The role of insulin receptor substrate 2 in hypothalamic and β cell function. J. Clin. Invest., 2005, 115(4), 940-950. doi: 10.1172/JCI24445 PMID: 15841180
- Grillo, C.A.; Piroli, G.G.; Kaigler, K.F.; Wilson, S.P.; Wilson, M.A.; Reagan, L.P. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav. Brain Res., 2011, 222(1), 230-235. doi: 10.1016/j.bbr.2011.03.052 PMID: 21458499
- Fernandez, A.M.; Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci., 2012, 13(4), 225-239. doi: 10.1038/nrn3209 PMID: 22430016
- Spinelli, M.; Fusco, S.; Grassi, C. Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline. Front. Neurosci., 2019, 13, 788. doi: 10.3389/fnins.2019.00788 PMID: 31417349
- Kitagishi, Y; Kobayashi, M; Kikuta, K; Matsuda, S. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depres. Res. Treat., 2012, 2012, 752563.
- Inkster, B.; Zai, G.; Lewis, G.; Miskowiak, K.W. GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Transl. Psychiatry, 2018, 8(1), 216. doi: 10.1038/s41398-018-0270-z PMID: 29317594
- Rippin, I.; Eldar-Finkelman, H. Mechanisms and therapeutic implications of GSK-3 in treating neurodegeneration. Cells, 2021, 10(2), 262. doi: 10.3390/cells10020262 PMID: 33572709
- Van Der Heide, L.P.; Kamal, A.; Artola, A.; Gispen, W.H.; Ramakers, G.M.J. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J. Neurochem., 2005, 94(4), 1158-1166. doi: 10.1111/j.1471-4159.2005.03269.x PMID: 16092951
- Grillo, C.A.; Piroli, G.G.; Lawrence, R.C.; Wrighten, S.A.; Green, A.J.; Wilson, S.P.; Sakai, R.R.; Kelly, S.J.; Wilson, M.A.; Mott, D.D.; Reagan, L.P. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes, 2015, 64(11), 3927-3936. doi: 10.2337/db15-0596 PMID: 26216852
- Costello, D.A.; Claret, M.; Al-Qassab, H.; Plattner, F.; Irvine, E.E.; Choudhury, A.I.; Giese, K.P.; Withers, D.J.; Pedarzani, P. Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One, 2012, 7(2), e31124. doi: 10.1371/journal.pone.0031124 PMID: 22383997
- Sa-nguanmoo, P.; Tanajak, P.; Kerdphoo, S.; Jaiwongkam, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol. Appl. Pharmacol., 2017, 333, 43-50. doi: 10.1016/j.taap.2017.08.005 PMID: 28807765
- Hierro-Bujalance, C.; Infante-Garcia, C.; del Marco, A.; Herrera, M.; Carranza-Naval, M.J.; Suarez, J.; Alves-Martinez, P.; Lubian-Lopez, S.; Garcia-Alloza, M. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimers disease and type 2 diabetes. Alzheimers Res. Ther., 2020, 12(1), 40. doi: 10.1186/s13195-020-00607-4 PMID: 32264944
- Ali, L. The neuroprotective effects of SGLT2 or Nox1/Nox4 selective inhibitors on Alzheimers-Like symptoms development in diabetic mice. Molecules, 2021, 26(23), 7213.
- Kullmann, S.; Hummel, J.; Wagner, R.; Dannecker, C.; Vosseler, A.; Fritsche, L. Empagliflozin improves insulin sensitivity of the hypothalamus in humans with prediabetes: A randomized, double-blind, placebo-controlled, phase 2 Trial. Diabetes Care, 2021, 45(2), 398-406. PMID: 34716213
- Yaribeygi, H; Panahi, Y; Javadi, B; Sahebkar, A the underlying role of oxidative stress in neurodegeneration: A mechanistic review. CNS Neurol. Disord.-Drug Target, 2018, 17(3), 207-215. doi: 10.2174/1871527317666180425122557
- Hajjar, I.; Hayek, S.S.; Goldstein, F.C.; Martin, G.; Jones, D.P.; Quyyumi, A. Oxidative stress predicts cognitive decline with aging in healthy adults: an observational study. J. Neuroinflammation, 2018, 15(1), 17. doi: 10.1186/s12974-017-1026-z PMID: 29338747
- Perry, N.; Martin, L.; Rosenfeldt, F.; Ou, R.; Rowsell, R.; Stough, C. Understanding the relationship between oxidative stress and cognition in the elderly: targets for nutraceutical interventions. Nutraceuticals in Brain Health and Beyond; Elsevier, 2021, pp. 57-80. doi: 10.1016/B978-0-12-820593-8.00006-9
- Tamagno, E.; Guglielmotto, M.; Vasciaveo, V.; Tabaton, M. Oxidative stress and beta amyloid in Alzheimers disease. Which comes first: The chicken or the egg? Antioxidants, 2021, 10(9), 1479. doi: 10.3390/antiox10091479 PMID: 34573112
- Nunomura, A.; Perry, G.; Pappolla, M.A.; Friedland, R.P.; Hirai, K.; Chiba, S.; Smith, M.A. Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J. Neuropathol. Exp. Neurol., 2000, 59(11), 1011-1017. doi: 10.1093/jnen/59.11.1011 PMID: 11089579
- Porcellotti, S.; Fanelli, F.; Fracassi, A.; Sepe, S.; Cecconi, F.; Bernardi, C. Oxidative stress during the progression of β-amyloid pathology in the neocortex of the Tg2576 mouse model of Alzheimers disease. Oxid. Med. Cell. Longev., 2015, 2015, 967203. doi: 10.1155/2015/967203
- Nkpaa, K.W.; Onyeso, G.I. Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats. Neurosci. Lett., 2018, 682, 92-99. doi: 10.1016/j.neulet.2018.06.023 PMID: 29908257
- Kawanami, D.; Matoba, K.; Takeda, Y.; Nagai, Y.; Akamine, T.; Yokota, T.; Sango, K.; Utsunomiya, K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int. J. Mol. Sci., 2017, 18(5), 1083. doi: 10.3390/ijms18051083 PMID: 28524098
- Osorio, H.; Coronel, I.; Arellano, A.; Pacheco, U.; Bautista, R.; Franco, M. Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats. Oxid. Med. Cell. Longev., 2012, 2012, 542042. doi: 10.1155/2012/542042
- Oelze, M.; Kröller-Schön, S.; Welschof, P.; Jansen, T.; Hausding, M.; Mikhed, Y.; Stamm, P.; Mader, M.; Zinßius, E.; Agdauletova, S.; Gottschlich, A.; Steven, S.; Schulz, E.; Bottari, S.P.; Mayoux, E.; Münzel, T.; Daiber, A. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One, 2014, 9(11), e112394. doi: 10.1371/journal.pone.0112394 PMID: 25402275
- Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82. doi: 10.1080/01616412.2016.1251711 PMID: 27809706
- Sawicki, K.T.; Ben-Sahra, I.; McNally, E.M. SGLT2 Inhibition on cardiac mitochondrial function: Searching for a sweet spot. Am. Heart Assoc., 2021, e021949.
- Maejima, Y. SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front. Cardiovasc. Med., 2020, 6, 186. doi: 10.3389/fcvm.2019.00186 PMID: 31970162
- Takagi, S.; Li, J.; Takagaki, Y.; Kitada, M.; Nitta, K.; Takasu, T.; Kanasaki, K.; Koya, D. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J. Diabetes Investig., 2018, 9(5), 1025-1032. doi: 10.1111/jdi.12802 PMID: 29352520
- Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol., 2019, Feb 234(2), 1310-1312. doi: 10.1002/jcp.27164
- Sugizaki, T.; Zhu, S.; Guo, G.; Matsumoto, A.; Zhao, J.; Endo, M.; Horiguchi, H.; Morinaga, J.; Tian, Z.; Kadomatsu, T.; Miyata, K.; Itoh, H.; Oike, Y. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech. Dis., 2017, 3(1), 12. doi: 10.1038/s41514-017-0012-0 PMID: 28900540
- Shin, S.J.; Chung, S.; Kim, S.J.; Lee, E.M.; Yoo, Y.H.; Kim, J.W.; Ahn, Y.B.; Kim, E.S.; Moon, S.D.; Kim, M.J.; Ko, S.H. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One, 2016, 11(11), e0165703. doi: 10.1371/journal.pone.0165703 PMID: 27802313
- Iannantuoni, F.; M de Marañon, A.; Diaz-Morales, N.; Falcon, R.; Bañuls, C.; Abad-Jimenez, Z.; Victor, V.M.; Hernandez-Mijares, A.; Rovira-Llopis, S. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J. Clin. Med., 2019, 8(11), 1814. doi: 10.3390/jcm8111814 PMID: 31683785
- Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol., 2014, 13(1), 148. doi: 10.1186/s12933-014-0148-1 PMID: 25344694
- Wang, S.; Jiao, F.; Border, J.J.; Fang, X.; Crumpler, R.F.; Liu, Y.; Zhang, H.; Jefferson, J.; Guo, Y.; Elliott, P.S.; Thomas, K.N.; Strong, L.B.; Urvina, A.H.; Zheng, B.; Rijal, A.; Smith, S.V.; Yu, H.; Roman, R.J.; Fan, F. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am. J. Physiol. Heart Circ. Physiol., 2022, 322(2), H246-H259. doi: 10.1152/ajpheart.00438.2021 PMID: 34951541
- Faraco, G.; Sugiyama, Y.; Lane, D.; Garcia-Bonilla, L.; Chang, H.; Santisteban, M.M.; Racchumi, G.; Murphy, M.; Van Rooijen, N.; Anrather, J.; Iadecola, C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest., 2016, 126(12), 4674-4689. doi: 10.1172/JCI86950 PMID: 27841763
- Miyachi, Y.; Tsuchiya, K.; Shiba, K.; Mori, K.; Komiya, C.; Ogasawara, N.; Ogawa, Y. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition. Sci. Rep., 2018, 8(1), 16113. doi: 10.1038/s41598-018-34305-x PMID: 30382157
- Adelantado-Renau, M.; Beltran-Valls, M.R.; Moliner-Urdiales, D. Inflammation and cognition in children and adolescents: A call for action. Front Pediatr., 2020, 8, 583. doi: 10.3389/fped.2020.00583 PMID: 33014950
- Gorelick, P.B. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci., 2010, 1207(1), 155-162. doi: 10.1111/j.1749-6632.2010.05726.x PMID: 20955439
- Hakim, A.M. A proposed hypothesis on dementia: Inflammation, small vessel disease, and hypoperfusion is the sequence that links all harmful lifestyles to cognitive impairment. Front. Aging Neurosci., 2021, 13, 679837. doi: 10.3389/fnagi.2021.679837 PMID: 33994998
- Strawbridge, R.; Carter, R.; Saldarini, F.; Tsapekos, D.; Young, A.H. Inflammatory biomarkers and cognitive functioning in individuals with euthymic bipolar disorder: exploratory study. BJPsych Open, 2021, 7(4), e126. doi: 10.1192/bjo.2021.966 PMID: 36043690
- Satirapoj, B. Sodium-glucose cotransporter 2 inhibitors with renoprotective effects. Kidney Dis., 2017, 3(1), 24-32. doi: 10.1159/000471765 PMID: 28785561
- Pirklbauer, M.; Bernd, M.; Fuchs, L.; Staudinger, P.; Corazza, U.; Leierer, J.; Mayer, G.; Schramek, H. Empagliflozin inhibits basal and IL-1β-mediated MCP-1/CCL2 and endothelin-1 expression in human proximal tubular cells. Int. J. Mol. Sci., 2020, 21(21), 8189. doi: 10.3390/ijms21218189 PMID: 33139635
- Han, J.H.; Oh, T.J.; Lee, G.; Maeng, H.J.; Lee, D.H.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lee, H.S.; Park, K.S.; Kim, Y.B.; Lim, S. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet. Diabetologia, 2017, 60(2), 364-376. doi: 10.1007/s00125-016-4158-2 PMID: 27866224
- Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204. doi: 10.1152/ajprenal.00520.2013 PMID: 24226524
- Liao, X.; Wang, X.; Li, H.; Li, L.; Zhang, G.; Yang, M.; Yuan, L.; Liu, H.; Yang, G.; Gao, L. Sodium-glucose cotransporter 2 (SGLT2) inhibitor increases circulating zinc-a2-glycoprotein levels in patients with type 2 diabetes. Sci. Rep., 2016, 6(1), 32887. doi: 10.1038/srep32887 PMID: 27611858
- Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimers disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678. doi: 10.1038/nature11729 PMID: 23254930
- Kim, S.R.; Lee, S.G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; Oh, C.M.; Jeon, J.Y.; Gee, H.Y.; Kim, J.H.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Lee, M.S.; Yu, J.W.; Cho, J.W.; Kim, J.S.; Lee, Y. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun., 2020, 11(1), 2127. doi: 10.1038/s41467-020-15983-6 PMID: 32358544
- Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol., 2018, 36(1), 489-517. doi: 10.1146/annurev-immunol-042617-053010 PMID: 29400998
- Li, J.; Wang, B.; Wu, H.; Yu, Y.; Xue, G.; Hou, Y. 17β-estradiol attenuates ketamine-induced neuroapoptosis and persistent cognitive deficits in the developing brain. Brain Res., 2014, 1593, 30-39. doi: 10.1016/j.brainres.2014.09.013 PMID: 25234726
- Han, D.; Jin, J.; Fang, H.; Xu, G. Long-term action of propofol on cognitive function and hippocampal neuroapoptosis in neonatal rats. Int. J. Clin. Exp. Med., 2015, 8(7), 10696-10704. PMID: 26379861
- Hua, F.Z.; Ying, J.; Zhang, J.; Wang, X.F.; Hu, Y.H.; Liang, Y.P.; Liu, Q.; Xu, G.H. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int. J. Mol. Med., 2016, 38(4), 1271-1280. doi: 10.3892/ijmm.2016.2715 PMID: 27572468
- Kwon, B.S.; Kim, J.M.; Park, S.K.; Kang, J.Y.; Kang, J.E.; Lee, C.J. Chronic alcohol exposure induced neuroapoptosis: Diminishing effect of ethyl acetate fraction from Aralia elata. Oxid. Med. Cell. Longev., 2019, 2019, 7849876.
- Man, Y-G.; Zhou, R-G.; Zhao, B. Efficacy of rutin in inhibiting neuronal apoptosis and cognitive disturbances in sevoflurane or propofol exposed neonatal mice. Int. J. Clin. Exp. Med., 2015, 8(8), 14397-14409. PMID: 26550427
- Wiciński, M.; Wódkiewicz, E.; Górski, K.; Walczak, M.; Malinowski, B. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: focus on Alzheimers disease and ischemia-related brain injury. Pharmaceuticals (Basel), 2020, 13(11), 379. doi: 10.3390/ph13110379 PMID: 33187206
- Yaribeygi, H.; Lhaf, F.; Sathyapalan, T.; Sahebkar, A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sci., 2019, 231, 116538. doi: 10.1016/j.lfs.2019.06.013 PMID: 31176776
- Shibusawa, R.; Yamada, E.; Okada, S.; Nakajima, Y.; Bastie, C.C.; Maeshima, A.; Kaira, K.; Yamada, M. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci. Rep., 2019, 9(1), 9887. doi: 10.1038/s41598-019-46402-6 PMID: 31285506
- Staels, B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am. J. Cardiol., 2017, 120(1), S28-S36. doi: 10.1016/j.amjcard.2017.05.013 PMID: 28606341
- Lee, W.C.; Chou, C.A.; Lee, L.C.; Chau, Y.Y.; Chiang, Y.W.; Chen, C.H.; Chen, J-B. J-B. FP416SGLT2 inhibitor protected renal proximal tubular cells from apoptosis by reducing intra-renal lipotoxicity. Nephrol. Dial. Transplant., 2018, 33(S1), i175-i176. doi: 10.1093/ndt/gfy104.FP416
- Saito, T.; Okada, S.; Yamada, E.; Shimoda, Y.; Osaki, A.; Tagaya, Y.; Shibusawa, R.; Okada, J.; Yamada, M. Effect of dapagliflozin on colon cancer cell Rapid Communication. Endocr. J., 2015, 62(12), 1133-1137. doi: 10.1507/endocrj.EJ15-0396 PMID: 26522271
- Karlsson, D.; Ahnmark, A.; Sabirsh, A.; Andréasson, A.C.; Gennemark, P.; Sandinge, A.S.; Chen, L.; Tyrberg, B.; Lindén, D.; Sörhede Winzell, M. Inhibition of SGLT2 preserves function and promotes proliferation of human islets cells in vivo in diabetic mice. Biomedicines, 2022, 10(2), 203. doi: 10.3390/biomedicines10020203 PMID: 35203411
- Constantinides, V.C.; Paraskevas, G.P.; Emmanouilidou, E.; Petropoulou, O.; Bougea, A.; Vekrellis, K.; Evdokimidis, I.; Stamboulis, E.; Kapaki, E. CSF biomarkers β-amyloid, tau proteins and a-synuclein in the differential diagnosis of Parkinson-plus syndromes. J. Neurol. Sci., 2017, 382, 91-95. doi: 10.1016/j.jns.2017.09.039 PMID: 29111028
- Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci., 2015, 9, 124. doi: 10.3389/fncel.2015.00124 PMID: 25914621
- Chen, N.C.; Chen, H.L.; Li, S.H.; Chang, Y.H.; Chen, M.H.; Tsai, N.W.; Yu, C.C.; Yang, S.Y.; Lu, C.H.; Lin, W.C. Plasma Levels of α-synuclein, Aβ-40 and T-tau as biomarkers to predict cognitive impairment in Parkinsons disease. Front. Aging Neurosci., 2020, 12, 112. doi: 10.3389/fnagi.2020.00112 PMID: 32410983
- Twohig, D.; Nielsen, H.M. α-synuclein in the pathophysiology of Alzheimers disease. Mol. Neurodegener., 2019, 14(1), 23. doi: 10.1186/s13024-019-0320-x PMID: 31186026
- Ponce-López, T.; Sorsby-Vargas, A.M.; Bocanegra-López, A.P.; Luna-Muñoz, J.; Ontiveros-Torres, M.A.; Villanueva-Fierro, I. Diabetes Mellitus and Amyloid Beta Protein Pathology in Dementia; In: Amyloid Diseases; Dmitry Kurouski, edt; 2019. doi: 10.5772/intechopen.84473
- Pablo-Fernández, E.; Courtney, R.; Rockliffe, A.; Gentleman, S.; Holton, J.L.; Warner, T.T. Faster disease progression in Parkinsons disease with type 2 diabetes is not associated with increased α-synuclein, tau, amyloid-β or vascular pathology. Neuropathol. Appl. Neurobiol., 2021, 47(7), 1080-1091. doi: 10.1111/nan.12728 PMID: 33969516
- Sim, A.Y.; Barua, S.; Kim, J.Y.; Lee, Y.; Lee, J.E. Role of DPP-4 and SGLT2 inhibitors connected to Alzheimer disease in type 2 diabetes mellitus. Front. Neurosci., 2021, 15, 708547. doi: 10.3389/fnins.2021.708547 PMID: 34489627
- Tomita, I; Kume, S; Sugahara, S; Osawa, N; Yamahara, K; Yasuda-Yamahara, M SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metabol., 2020, 32(3), 404-419. doi: 10.1016/j.cmet.2020.06.020
- Caccamo, A.; Majumder, S.; Richardson, A.; Strong, R.; Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments. J. Biol. Chem., 2010, 285(17), 13107-13120. doi: 10.1074/jbc.M110.100420 PMID: 20178983
- Ferrer, I.; Barrachina, M.; Puig, B. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimers disease, Picks disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol., 2002, 104(6), 583-591. doi: 10.1007/s00401-002-0587-8 PMID: 12410379
- Khan, T.; Khan, S.; Akhtar, M.; Ali, J.; Najmi, A.K. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem. Int., 2021, 150, 105158. doi: 10.1016/j.neuint.2021.105158 PMID: 34391818
- Alafnan, A. Biochemical interaction analysis of natural SGLT2 inhibitors with Alzheimer targets: A computational approach. J. Biochem. Technol., 2020, 11(4), 73-84.
Supplementary files
