TRIP13 Activates Glycolysis to Promote Cell Stemness and Strengthen Doxorubicin Resistance of Colorectal Cancer Cells
- Authors: Liu G.1, Wang H.2, Ran R.1, Wang Y.1, Li Y.1
-
Affiliations:
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University,
- Department of Health Management Center,, The Second Affiliated Hospital of Chongqing Medical University
- Issue: Vol 31, No 22 (2024)
- Pages: 3397-3411
- Section: Anti-Infectives and Infectious Diseases
- URL: https://jdigitaldiagnostics.com/0929-8673/article/view/644779
- DOI: https://doi.org/10.2174/0109298673255498231117100421
- ID: 644779
Cite item
Full Text
Abstract
Background:Chemotherapy resistance is one of the main causes of clinical chemotherapy failure. Current cancer research explores the drug resistance mechanism and new therapeutic targets. This work aims to elucidate the mechanism of thyroid hormone receptor interactor 13 (TRIP13) affecting doxorubicin (DOX) resistance in colorectal cancer (CRC).
Methods:Bioinformatics analyses were employed to clarify TRIP13 expression in CRC tissues and predict the correlation of the TRIP13 enrichment pathway with glycolysis-related genes and stemness index mRNAsi. Quantitative real-time polymerase chain reaction and western blot were adopted to analyze the expression of TRIP13 and glycolysis- related genes. Cell Counting Kit-8 was utilized to determine the cell viability and IC50 value. Western blot was employed to measure the expression of stemness-related factors. Cell function assays were performed to detect cells' sphere-forming ability and glycolysis level. Animal models were constructed to determine the effects of TRIP13 expression on CRC tumor growth.
Results:TRIP13 was significantly overexpressed in CRC, concentrated in the glycolysis signaling pathway, and positively correlated with stemness index mRNAsi. High expression of TRIP13 facilitated DOX resistance in CRC. Further mechanistic studies revealed that overexpression of TRIP13 could promote cell stemness through glycolysis, which was also confirmed in animal experiments.
Conclusion:TRIP13 was highly expressed in CRC, which enhanced the DOX resistance of CRC cells by activating glycolysis to promote cell stemness. These findings offer new insights into the pathogenesis of DOX resistance in CRC and suggest that TRIP13 may be a new target for reversing DOX resistance in CRC.
About the authors
Guangyi Liu
Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University,
Email: info@benthamscience.net
Huan Wang
Department of Health Management Center,, The Second Affiliated Hospital of Chongqing Medical University
Email: info@benthamscience.net
Rui Ran
Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University,
Email: info@benthamscience.net
Yicheng Wang
Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University,
Email: info@benthamscience.net
Yang Li
Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University,
Author for correspondence.
Email: info@benthamscience.net
References
- Wen, J.; Min, X.; Shen, M.; Hua, Q.; Han, Y.; Zhao, L.; Liu, L.; Huang, G.; Liu, J.; Zhao, X. ACLY facilitates colon cancer cell metastasis by CTNNB1. . J. Exp. Clin. Cancer Res., 2019, 38(1), 401.
- Xi, L.; Liu, Q.; Zhang, W.; Luo, L.; Song, J.; Liu, R.; Wei, S.; Wang, Y. Circular RNA circCSPP1 knockdown attenuates doxorubicin resistance and suppresses tumor progression of colorectal cancer via miR-944/FZD7 axis. Cancer Cell Int., 2021, 21(1), 153. doi: 10.1186/s12935-021-01855-6 PMID: 33663510
- Lu, S.; Guo, M.; Fan, Z.; Chen, Y.; Shi, X.; Gu, C.; Yang, Y. Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer. Am. J. Transl. Res., 2019, 11(7), 4397-4410. PMID: 31396344
- Bian, X.; Chen, H.; Yang, P.; Li, Y.; Zhang, F.; Zhang, J.; Wang, W.; Zhao, W.; Zhang, S.; Chen, Q.; Zheng, Y.; Sun, X.; Wang, X.; Chien, K.Y.; Wu, Q. Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat. Commun., 2017, 8(1), 14420. doi: 10.1038/ncomms14420 PMID: 28240261
- Li, W.; Xu, M.; Li, Y.; Huang, Z.; Zhou, J.; Zhao, Q.; Le, K.; Dong, F.; Wan, C.; Yi, P. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J. Transl. Med., 2020, 18(1), 92. doi: 10.1186/s12967-020-02267-2 PMID: 32070368
- Li, C.; Zhang, G.; Zhao, L.; Ma, Z.; Chen, H. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol., 2015, 14(1), 15. doi: 10.1186/s12957-016-0769-9 PMID: 26791262
- Chen, Z.; Hu, Z.; Sui, Q.; Huang, Y.; Zhao, M.; Li, M.; Liang, J.; Lu, T.; Zhan, C.; Lin, Z.; Sun, F.; Wang, Q.; Tan, L. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/glycolysis axis in lung adenocarcinoma. Int. J. Biol. Sci., 2022, 18(2), 522-535. doi: 10.7150/ijbs.67556 PMID: 35002507
- Fang, Z.; Sun, Q.; Yang, H.; Zheng, J. SDHB suppresses the tumorigenesis and development of ccRCC by inhibiting glycolysis. Front. Oncol., 2021, 11, 639408. doi: 10.3389/fonc.2021.639408 PMID: 34094922
- Zhao, S.; Guan, B.; Mi, Y.; Shi, D.; Wei, P.; Gu, Y.; Cai, S.; Xu, Y.; Li, X.; Yan, D.; Huang, M.; Li, D. LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit. Oncogene, 2021, 40(28), 4709-4724. doi: 10.1038/s41388-021-01859-6 PMID: 34145399
- Zhou, Y.; Tozzi, F.; Chen, J.; Fan, F.; Xia, L.; Wang, J.; Gao, G.; Zhang, A.; Xia, X.; Brasher, H.; Widger, W.; Ellis, L.M.; Weihua, Z. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res., 2012, 72(1), 304-314. doi: 10.1158/0008-5472.CAN-11-1674 PMID: 22084398
- Shi, H.; Li, K.; Feng, J.; Zhang, X. Overexpression of long non-coding RNA urothelial carcinoma associated 1 causes paclitaxel (Taxol) resistance in colorectal cancer cells by promoting glycolysis. J. Chemother., 2021, 33(6), 409-419. doi: 10.1080/1120009X.2021.1906032 PMID: 33818320
- Dai, S.; Peng, Y.; Zhu, Y.; Xu, D.; Zhu, F.; Xu, W.; Chen, Q.; Zhu, X.; Liu, T.; Hou, C.; Wu, J.; Miao, Y. Glycolysis promotes the progression of pancreatic cancer and reduces cancer cell sensitivity to gemcitabine. Biomed. Pharmacother., 2020, 121, 109521. doi: 10.1016/j.biopha.2019.109521 PMID: 31689601
- Agarwal, S.; Behring, M.; Kim, H.G.; Chandrashekar, D.S.; Chakravarthi, B.V.S.K.; Gupta, N.; Bajpai, P.; Elkholy, A.; Al Diffalha, S.; Datta, P.K.; Heslin, M.J.; Varambally, S.; Manne, U. TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Mol. Oncol., 2020, 14(12), 3007-3029. doi: 10.1002/1878-0261.12821 PMID: 33037736
- Zhang, G.; Zhu, Q.; Fu, G.; Hou, J.; Hu, X.; Cao, J.; Peng, W.; Wang, X.; Chen, F.; Cui, H. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br. J. Cancer, 2019, 121(12), 1069-1078. doi: 10.1038/s41416-019-0633-0 PMID: 31740732
- Zhou, X.Y.; Shu, X.M. TRIP13 promotes proliferation and invasion of epithelial ovarian cancer cells through Notch signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(2), 522-529. PMID: 30720159
- Zhang, L.T.; Ke, L.X.; Wu, X.Y.; Tian, H.T.; Deng, H.Z.; Xu, L.Y.; Li, E.M.; Long, L. TRIP13 induces nedaplatin resistance in esophageal squamous cell carcinoma by enhancing repair of DNA damage and inhibiting apoptosis. BioMed Res. Int., 2022, 2022, 1-16. doi: 10.1155/2022/7295458 PMID: 35601150
- Ma, S.; Yang, D.; Liu, Y.; Wang, Y.; Lin, T.; Li, Y.; Yang, S.; Zhang, W.; Zhang, R. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging, 2018, 10(8), 2062-2078. doi: 10.18632/aging.101530 PMID: 30144787
- Zhang, Y.; Tang, B.; Song, J.; Yu, S.; Li, Y.; Su, H.; He, S. Lnc-PDZD7 contributes to stemness properties and chemosensitivity in hepatocellular carcinoma through EZH2-mediated ATOH8 transcriptional repression. J. Exp. Clin. Cancer Res., 2019, 38(1), 92. doi: 10.1186/s13046-019-1106-2 PMID: 30786928
- Zhao, S.J.; Shen, Y.F.; Li, Q.; He, Y.J.; Zhang, Y.K.; Hu, L.P.; Jiang, Y.Q.; Xu, N.W.; Wang, Y.J.; Li, J.; Wang, Y.H.; Liu, F.; Zhang, R.; Yin, G.Y.; Tang, J.H.; Zhou, D.; Zhang, Z.G. SLIT2/ROBO1 axis contributes to the Warburg effect in osteosarcoma through activation of SRC/ERK/c-MYC/PFKFB2 pathway. Cell Death Dis., 2018, 9(3), 390. doi: 10.1038/s41419-018-0419-y PMID: 29523788
- Liu, X.; Shen, X.; Zhang, J. TRIP13 exerts a cancer-promoting role in cervical cancer by enhancing Wnt/β-catenin signaling via ACTN4. Environ. Toxicol., 2021, 36(9), 1829-1840. doi: 10.1002/tox.23303 PMID: 34061428
- Cai, W.; Ni, W.; Jin, Y.; Li, Y. TRIP13 promotes lung cancer cell growth and metastasis through AKT/mTORC1/c-Myc signaling. Cancer Biomark., 2021, 30(2), 237-248. doi: 10.3233/CBM-200039 PMID: 33136091
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Go, G.; Lee, C.S.; Yoon, Y.M.; Lim, J.H.; Kim, T.H.; Lee, S.H. PrPC aptamer conjugatedgold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. Int. J. Mol. Sci., 2021, 22(4), 1976. doi: 10.3390/ijms22041976 PMID: 33671292
- Huang, J.Q.; Li, H.F.; Zhu, J.; Song, J.W.; Zhang, X.B.; Gong, P.; Liu, Q.Y.; Zhou, C.H.; Wang, L.; Gong, L.Y. SRPK1/AKT axis promotes oxaliplatin-induced anti-apoptosis via NF-κB activation in colon cancer. J. Transl. Med., 2021, 19(1), 280. doi: 10.1186/s12967-021-02954-8 PMID: 34193174
- Agarwal, S.; Afaq, F.; Bajpai, P.; Kim, H.G.; Elkholy, A.; Behring, M.; Chandrashekar, D.S.; Diffalha, S.A.; Khushman, M.; Sugandha, S.P.; Varambally, S.; Manne, U. DCZ0415, a small-molecule inhibitor targeting TRIP13, inhibits EMT and metastasis via inactivation of the FGFR4/STAT3 axis and the Wnt/β-catenin pathway in colorectal cancer. Mol. Oncol., 2022, 16(8), 1728-1745. doi: 10.1002/1878-0261.13201 PMID: 35194944
- Wang, Y.; Huang, J.; Li, B.; Xue, H.; Tricot, G.; Hu, L.; Xu, Z.; Sun, X.; Chang, S.; Gao, L.; Tao, Y.; Xu, H.; Xie, Y.; Xiao, W.; Yu, D.; Kong, Y.; Chen, G.; Sun, X.; Lian, F.; Zhang, N.; Wu, X.; Mao, Z.; Zhan, F.; Zhu, W.; Shi, J. A small-molecule inhibitor targeting TRIP13 suppresses multiple myeloma progression. Cancer Res., 2020, 80(3), 536-548. doi: 10.1158/0008-5472.CAN-18-3987 PMID: 31732653
- Lu, R.; Zhou, Q.; Ju, L.; Chen, L.; Wang, F.; Shao, J. Upregulation of TRIP13 promotes the malignant progression of lung cancer via the EMT pathway. Oncol. Rep., 2021, 46(2), 172. doi: 10.3892/or.2021.8123 PMID: 34184074
- Chen, Y.; Chen, D.; Qin, Y.; Qiu, C.; Zhou, Y.; Dai, M.; Li, L.; Sun, Q.; Jiang, Y. TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Discov., 2022, 8(1), 35. doi: 10.1038/s41420-022-00824-w PMID: 35075117
- Najafi, M.; Mortezaee, K.; Majidpoor, J. Cancer stem cell (CSC) resistance drivers. Life Sci., 2019, 234, 116781. doi: 10.1016/j.lfs.2019.116781 PMID: 31430455
- Huang, R.; Rofstad, E.K. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget, 2017, 8(21), 35351-35367. doi: 10.18632/oncotarget.10169 PMID: 27343550
- Bayik, D.; Lathia, J.D. Cancer stem cellimmune cell crosstalk in tumour progression. Nat. Rev. Cancer, 2021, 21(8), 526-536. doi: 10.1038/s41568-021-00366-w PMID: 34103704
- Hao, Z.; Avci, U.; Tan, L.; Zhu, X.; Glushka, J.; Pattathil, S.; Eberhard, S.; Sholes, T.; Rothstein, G.E.; Lukowitz, W.; Orlando, R.; Hahn, M.G.; Mohnen, D. Loss of arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Front. Plant Sci., 2014, 5, 357. doi: 10.3389/fpls.2014.00357 PMID: 25120548
- Chi, J.; Zhang, H.; Hu, J.; Song, Y.; Li, J.; Wang, L.; Wang, Z. AGR3 promotes the stemness of colorectal cancer via modulating Wnt/β-catenin signalling. Cell. Signal., 2020, 65, 109419. doi: 10.1016/j.cellsig.2019.109419 PMID: 31526829
- Qiu, L.; Yang, X.; Wu, J.; Huang, C.; Miao, Y.; Fu, Z. HIST2H2BF potentiates the propagation of cancer stem cells via notch signaling to promote malignancy and liver metastasis in colorectal carcinoma. Front. Oncol., 2021, 11, 677646. doi: 10.3389/fonc.2021.677646 PMID: 34476209
- Li, H.; Chen, J.; Liu, J.; Lai, Y.; Huang, S.; Zheng, L.; Fan, N. CPT2 downregulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism. Exp. Cell Res., 2021, 409(1), 112892. doi: 10.1016/j.yexcr.2021.112892 PMID: 34688609
- Shao, X.; Zheng, X.; Ma, D.; Liu, Y.; Liu, G. Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis. Biosci. Rep., 2021, 41(7), BSR20200533. doi: 10.1042/BSR20200533 PMID: 33645623
- Wang, Y.; Lu, J.H.; Wu, Q.N.; Jin, Y.; Wang, D.S.; Chen, Y.X.; Liu, J.; Luo, X.J.; Meng, Q.; Pu, H.Y.; Wang, Y.N.; Hu, P.S.; Liu, Z.X.; Zeng, Z.L.; Zhao, Q.; Deng, R.; Zhu, X.F.; Ju, H.Q.; Xu, R.H. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol. Cancer, 2019, 18(1), 174. doi: 10.1186/s12943-019-1105-0 PMID: 31791342
- Dong, S.; Liang, S.; Cheng, Z.; Zhang, X.; Luo, L.; Li, L.; Zhang, W.; Li, S.; Xu, Q.; Zhong, M.; Zhu, J.; Zhang, G.; Hu, S. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J. Exp. Clin. Cancer Res., 2022, 41(1), 15. doi: 10.1186/s13046-021-02229-6 PMID: 34998404
- Yang, H.; Zhu, J.; Wang, G.; Liu, H.; Zhou, Y.; Qian, J. STK35 is ubiquitinated by NEDD4L and promotes glycolysis and inhibits apoptosis through regulating the AKT signaling pathway, influencing chemoresistance of colorectal cancer. Front. Cell Dev. Biol., 2020, 8, 582695. doi: 10.3389/fcell.2020.582695 PMID: 33117809
Supplementary files
