High-expression of FABP4 in Tubules is a Risk Factor for Poor Prognosis in DKD Patients


Cite item

Full Text

Abstract

Background::Lipid metabolism imbalance is involved in the mechanism of renal tubular injury in diabetic kidney disease (DKD). Fatty acid binding protein 4 (FABP4) has been reported to participate in cellular lipid toxicity. However, the expression of FABP4 in renal tissues of DKD and its correlation with clinical/ pathological parameters and prognosis have not been studied.

Method::A retrospective cohort study was conducted in 108 hospitalized Type 2 diabetes (T2D) patients with renal injury, including 70 with DKD and 38 with NDKD (non-DKD). Clinical features, pathological findings, and follow-up parameters were collected. Serum and urine FABP4 were detected by ELISA. An immunohistochemistry stain was used to determine FABP4 in renal tubulointerstitium. A double immunofluorescence stain was employed to assess FABP4- and CD68-positive macrophages. Correlation analysis, logistic regression models, receiver operating characteristic (ROC), and Kaplan-Meier survival curve were performed for statistical analysis.

Results::DKD patients had increased expression of FABP4 and ectopic fat deposition in tubules. As shown by correlation analyses, FABP4 expression in renal tubules was positively correlated with UNAG (r=0.589, p=0.044) and ESRD (r=0.740, p=0.004). Multivariate regression analysis revealed that UNAG level was correlated with FABP4 expression level above median value (odds ratio:1.154, 95% confidence interval:1.009-1.321, p=0.037). High-expression of FABP4 in renal tubules of DKD was at an increased risk of ESRD. Increased FABP4 expression in inflammatory cells was also associated with ESRD in DKD.

Conclusion::High-expression of FABP4 is involved in the pathogenesis of renal tubular lipid injury and is a risk factor for poor prognosis in DKD patients

About the authors

Yao Huang

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Xinyuan Cui

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Zheng Li

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Shuguang Yuan

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Yachun Han

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Xiangqing Xu

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Xiao Fu

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Kewen Shi

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Zurong Zhang

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Jinying Wei

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Shiyu Xia

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Yang Xiao

National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China., Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Song Xue

National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China., Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Lin Sun

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Hong Liu

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Email: info@benthamscience.net

Xuejing Zhu

Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, Second Xiangya Hospital of Central South University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hirano, T. Pathophysiology of diabetic dyslipidemia. J. Atheroscler. Thromb., 2018, 25(9), 771-782. doi: 10.5551/jat.RV17023 PMID: 29998913
  2. Yao, F.; Li, Z.; Ehara, T.; Yang, L.; Wang, D.; Feng, L.; Zhang, Y.; Wang, K.; Shi, Y.; Duan, H.; Zhang, L. Fatty Acid-Binding Protein 4 mediates apoptosis via endoplasmic reticulum stress in mesangial cells of diabetic nephropathy. Mol. Cell. Endocrinol., 2015, 411, 232-242. doi: 10.1016/j.mce.2015.05.003 PMID: 25958041
  3. Chen, Y.; Dai, Y.; Song, K.; Huang, Y.; Zhang, L.; Zhang, C.; Yan, Q.; Gao, H. Pre-emptive pharmacological inhibition of fatty acid–binding protein 4 attenuates kidney fibrosis by reprogramming tubular lipid metabolism. Cell Death Dis., 2021, 12(6), 572. doi: 10.1038/s41419-021-03850-1 PMID: 34083513
  4. Reese-Wagoner, A.; Thompson, J.; Banaszak, L. Structural properties of the adipocyte lipid binding protein. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1999, 1441(2-3), 106-116. doi: 10.1016/S1388-1981(99)00154-7 PMID: 10570239
  5. Furuhashi, M.; Fucho, R.; Görgün, C.Z.; Tuncman, G.; Cao, H.; Hotamisligil, G.S. Adipocyte/macrophage fatty acid–binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J. Clin. Invest., 2008, 118(7), 2640-2650. doi: 10.1172/JCI34750 PMID: 18551191
  6. Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 2008, 7(6), 489-503. doi: 10.1038/nrd2589 PMID: 18511927
  7. Amiri, M.; Yousefnia, S.; Seyed Forootan, F.; Peymani, M.; Ghaedi, K.; Nasr Esfahani, M.H. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene, 2018, 676, 171-183. doi: 10.1016/j.gene.2018.07.035 PMID: 30021130
  8. Xiao, Y.; Shu, L.; Wu, X.; Liu, Y.; Cheong, L.Y.; Liao, B.; Xiao, X.; Hoo, R.L.C.; Zhou, Z.; Xu, A. Fatty acid binding protein 4 promotes autoimmune diabetes by recruitment and activation of pancreatic islet macrophages. JCI Insight, 2021, 6(7), e141814. doi: 10.1172/jci.insight.141814 PMID: 33690220
  9. Toruner, F.; Altinova, A.E.; Akturk, M.; Kaya, M.; Arslan, E.; Bukan, N.; Kan, E.; Yetkin, I.; Arslan, M. The relationship between adipocyte fatty acid binding protein-4, retinol binding protein-4 levels and early diabetic nephropathy in patients with type 2 diabetes. Diabetes Res. Clin. Pract., 2011, 91(2), 203-207. doi: 10.1016/j.diabres.2010.11.011 PMID: 21176857
  10. Elmasri, H.; Karaaslan, C.; Teper, Y.; Ghelfi, E.; Weng, M.; Ince, T.A.; Kozakewich, H.; Bischoff, J.; Cataltepe, S. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J., 2009, 23(11), 3865-3873. doi: 10.1096/fj.09-134882 PMID: 19625659
  11. Iso, T.; Maeda, K.; Hanaoka, H.; Suga, T.; Goto, K.; Syamsunarno, M.R.A.A.; Hishiki, T.; Nagahata, Y.; Matsui, H.; Arai, M.; Yamaguchi, A.; Abumrad, N.A.; Sano, M.; Suematsu, M.; Endo, K.; Hotamisligil, G.S.; Kurabayashi, M. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler. Thromb. Vasc. Biol., 2013, 33(11), 2549-2557. doi: 10.1161/ATVBAHA.113.301588 PMID: 23968980
  12. Yuan, S.; Wang, Y.; Li, Z.; Chen, X.; Song, P.; Chen, A.; Qu, Z.; Wen, S.; Liu, H.; Zhu, X. Gasdermin D is involved in switching from apoptosis to pyroptosis in TLR4-mediated renal tubular epithelial cells injury in diabetic kidney disease. Arch. Biochem. Biophys., 2022, 727, 109347. doi: 10.1016/j.abb.2022.109347 PMID: 35809639
  13. Hotamisligil, G.S.; Bernlohr, D.A. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat. Rev. Endocrinol., 2015, 11(10), 592-605. doi: 10.1038/nrendo.2015.122 PMID: 26260145
  14. Furuhashi, M.; Ishimura, S.; Ota, H.; Hayashi, M.; Nishitani, T.; Tanaka, M.; Yoshida, H.; Shimamoto, K.; Hotamisligil, G.S.; Miura, T. Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS One, 2011, 6(11), e27356. doi: 10.1371/journal.pone.0027356 PMID: 22102888
  15. Yeung, D.C.Y.; Xu, A.; Tso, A.W.K.; Chow, W.S.; Wat, N.M.S.; Fong, C.H.Y.; Tam, S.; Sham, P.C.; Lam, K.S.L. Circulating levels of adipocyte and epidermal fatty acid-binding proteins in relation to nephropathy staging and macrovascular complications in type 2 diabetic patients. Diabetes Care, 2009, 32(1), 132-134. doi: 10.2337/dc08-1333 PMID: 18931100
  16. Ni, X.; Gu, Y.; Yu, H.; Wang, S.; Chen, Y.; Wang, X.; Yuan, X.; Jia, W. Serum adipocyte fatty acid-binding protein 4 levels are independently associated with radioisotope glomerular filtration rate in type 2 diabetic patients with early diabetic nephropathy. BioMed Res. Int., 2018, 2018, 1-9. doi: 10.1155/2018/4578140 PMID: 29992142
  17. Seo, D.H.; Nam, M.; Jung, M.; Suh, Y.J.; Ahn, S.H.; Hong, S.; Kim, S.H. Serum levels of adipocyte fatty acid-binding protein are associated with rapid renal function decline in patients with type 2 diabetes mellitus and preserved renal function. Diabetes Metab. J., 2020, 44(6), 875-886. doi: 10.4093/dmj.2019.0221 PMID: 32662255
  18. Tan, Z.; Guo, F.; Huang, Z.; Xia, Z.; Liu, J.; Tao, S.; Li, L.; Feng, Y.; Du, X.; Ma, L.; Fu, P. Pharmacological and genetic inhibition of fatty acid binding protein 4 alleviated cisplatin induced acute kidney injury. J. Cell. Mol. Med., 2019, 23(9), 6260-6270. doi: 10.1111/jcmm.14512 PMID: 31286669
  19. Shrestha, S.; Sunaga, H.; Hanaoka, H.; Yamaguchi, A.; Kuwahara, S.; Umbarawan, Y.; Nakajima, K.; Machida, T.; Murakami, M.; Saito, A.; Tsushima, Y.; Kurabayashi, M.; Iso, T. Circulating FABP4 is eliminated by the kidney via glomerular filtration followed by megalin-mediated reabsorption. Sci. Rep., 2018, 8(1), 16451. doi: 10.1038/s41598-018-34902-w PMID: 30401801
  20. Jiang, W.; Xu, C.; Du, C.; Dong, J.; Xu, S.; Hu, B.; Feng, R.; Zang, D.; Meng, X.; Huang, C.; Li, J.; Ma, T. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics, 2022, 12(1), 324-339. doi: 10.7150/thno.63735 PMID: 34987648
  21. Feng, Y.; Guo, F.; Xia, Z.; Liu, J.; Mai, H.; Liang, Y.; Zhu, G.; Li, Y.; Bai, L.; Li, L.; Huang, R.; Shi, M.; Ma, L.; Fu, P. Inhibition of fatty acid–binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition. Front. Immunol., 2020, 11, 566535. doi: 10.3389/fimmu.2020.566535 PMID: 33101287

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers