Leukemia Inhibitory Factor Protects against Degeneration of Cone Photoreceptors Caused by RPE65 Deficiency
- Authors: Dong S.1, Zhen F.2, Zou T.3, Zhou Y.4, Wu J.5, Wang T.6, Zhang H.6
-
Affiliations:
- Department of Ophthalmology,, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
- Department of Ophthalmology,, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics,, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
- Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China
- Issue: Vol 31, No 25 (2024)
- Pages: 4022-4033
- Section: Anti-Infectives and Infectious Diseases
- URL: https://jdigitaldiagnostics.com/0929-8673/article/view/644914
- DOI: https://doi.org/10.2174/0109298673240896231027053716
- ID: 644914
Cite item
Full Text
Abstract
Background::Retinal pigment epithelium (RPE) 65 is a key enzyme in the visual cycle involved in the regeneration of 11-cis-retinal. Mutations in the human RPE65 gene cause Lebers congenital amaurosis (LCA), a severe form of an inherited retinal disorder. Animal models carrying Rpe65 mutations develop early-onset retinal degeneration. In particular, the cones degenerate faster than the rods. To date, gene therapy has been used successfully to treat RPE65-associated retinal disorders. However, gene therapy does not completely prevent progressive retinal degeneration in patients, possibly due to the vulnerability of cones in these patients. In the present study, we tested whether leukemia inhibitory factor (LIF), a trophic factor, protects cones in rd12 mice harboring a nonsense mutation in Rpe65.
Methods::LIF was administered to rd12 mice by intravitreal microinjection. Apoptosis of retinal cells was analyzed by TUNEL assay. The degeneration of cone cells was evaluated by immunostaining of retinal sections and retinal flat-mounts. Signaling proteins regulated by LIF in the retinal and cultured cells were determined by immunoblotting.
Results::Intravitreal administration of LIF activated the STAT3 signaling pathway, thereby inhibiting photoreceptor apoptosis and preserving cones in rd12 mice. Niclosamide (NCL), an inhibitor of STAT3 signaling, effectively blocked STAT3 signaling and autophagy in cultured 661W cells treated with LIF. Co-administration of LIF with NCL to rd12 mice abolished the protective effect of LIF, suggesting that STAT3 signaling and autophagy mediate the protection.
Conclusion::LIF is a potent factor that protects cones in rd12 mice. This finding implies that LIF can be used in combination with gene therapy to achieve better therapeutic outcomes for patients with RPE65-associated LCA.
Keywords
About the authors
Shuqian Dong
Department of Ophthalmology,, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
Email: info@benthamscience.net
Fangyuan Zhen
Department of Ophthalmology,, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital
Email: info@benthamscience.net
Tongdan Zou
The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics,, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China
Email: info@benthamscience.net
Yongwei Zhou
Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
Email: info@benthamscience.net
Jiahui Wu
Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
Email: info@benthamscience.net
Ting Wang
The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China
Email: info@benthamscience.net
Houbin Zhang
The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China
Author for correspondence.
Email: info@benthamscience.net
References
- Tsang, S.H.; Sharma, T. Leber congenital amaurosis. Adv. Exp. Med. Biol., 2018, 1085, 131-137. doi: 10.1007/978-3-319-95046-4_26 PMID: 30578499
- Duan, W.; Zhou, T.; Jiang, H.; Zhang, M.; Hu, M.; Zhang, L. A novel nonsense variant (c.1499C>G) in CRB1 caused Leber congenital amaurosis-8 in a Chinese family and a literature review. BMC Med. Genomics, 2022, 15(1), 197. doi: 10.1186/s12920-022-01356-z PMID: 36115989
- Kumaran, N.; Moore, A.T.; Weleber, R.G.; Michaelides, M. Leber congenital amaurosis/early-onset severe retinal dystrophy: Clinical features, molecular genetics and therapeutic interventions. Br. J. Ophthalmol., 2017, 101(9), 1147-1154. doi: 10.1136/bjophthalmol-2016-309975 PMID: 28689169
- Kiser, P.D. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog. Retin. Eye Res., 2022, 88, 101013. doi: 10.1016/j.preteyeres.2021.101013 PMID: 34607013
- Hofmann, K.P.; Lamb, T.D. Rhodopsin, light-sensor of vision. Prog. Retin. Eye Res., 2023, 93, 101116. doi: 10.1016/j.preteyeres.2022.101116 PMID: 36273969
- Seeliger, M.W.; Grimm, C.; Ståhlberg, F.; Friedburg, C.; Jaissle, G.; Zrenner, E.; Guo, H.; Remé, C.E.; Humphries, P.; Hofmann, F.; Biel, M.; Fariss, R.N.; Redmond, T.M.; Wenzel, A. New views on RPE65 deficiency: The rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat. Genet., 2001, 29(1), 70-74. doi: 10.1038/ng712 PMID: 11528395
- Redmond, T.M.; Yu, S.; Lee, E.; Bok, D.; Hamasaki, D.; Chen, N.; Goletz, P.; Ma, J.X.; Crouch, R.K.; Pfeifer, K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet., 1998, 20(4), 344-351. doi: 10.1038/3813 PMID: 9843205
- Pang, J.J.; Chang, B.; Hawes, N.L.; Hurd, R.E.; Davisson, M.T.; Li, J.; Noorwez, S.M.; Malhotra, R.; McDowell, J.H.; Kaushal, S.; Hauswirth, W.W.; Nusinowitz, S.; Thompson, D.A.; Heckenlively, J.R. Retinal degeneration 12 (rd12): A new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol. Vis., 2005, 11, 152-162. PMID: 15765048
- Fan, J.; Rohrer, B.; Moiseyev, G.; Ma, J.; Crouch, R.K. Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc. Natl. Acad. Sci., 2003, 100(23), 13662-13667. doi: 10.1073/pnas.2234461100 PMID: 14578454
- Fan, J.; Rohrer, B.; Frederick, J.M.; Baehr, W.; Crouch, R.K. Rpe65-/- and Lrat-/- mice: Comparable models of leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci., 2008, 49(6), 2384-2389. doi: 10.1167/iovs.08-1727 PMID: 18296659
- Zhang, H.; Fan, J.; Li, S.; Karan, S.; Rohrer, B.; Palczewski, K.; Frederick, J.M.; Crouch, R.K.; Baehr, W. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J. Neurosci., 2008, 28(15), 4008-4014. doi: 10.1523/JNEUROSCI.0317-08.2008 PMID: 18400900
- Zhang, T.; Zhang, N.; Baehr, W.; Fu, Y. Cone opsin determines the time course of cone photoreceptor degeneration in Leber congenital amaurosis. Proc. Natl. Acad. Sci., 2011, 108(21), 8879-8884. doi: 10.1073/pnas.1017127108 PMID: 21555576
- Zhang, T.; Fu, Y. A Phe-rich region in short-wavelength sensitive opsins is responsible for their aggregation in the absence of 11- cis- retinal. FEBS Lett., 2013, 587(15), 2430-2434. doi: 10.1016/j.febslet.2013.06.012 PMID: 23792161
- Maeda, T.; Cideciyan, A.V.; Maeda, A.; Golczak, M.; Aleman, T.S.; Jacobson, S.G.; Palczewski, K. Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Hum. Mol. Genet., 2009, 18(12), 2277-2287. doi: 10.1093/hmg/ddp163 PMID: 19339306
- Maeda, T.; Maeda, A.; Casadesus, G.; Palczewski, K.; Margaron, P. Evaluation of 9-cis-retinyl acetate therapy in Rpe65-/- mice. Invest. Ophthalmol. Vis. Sci., 2009, 50(9), 4368-4378. doi: 10.1167/iovs.09-3700 PMID: 19407008
- Dai, X.; Jin, X.; Ye, Q.; Huang, H.; Duo, L.; Lu, C.; Bao, J.; Chen, H. Intraperitoneal chromophore injections delay early-onset and rapid retinal cone degeneration in a mouse model of Leber congenital amaurosis. Exp. Eye Res., 2021, 212, 108776. doi: 10.1016/j.exer.2021.108776 PMID: 34582935
- Koenekoop, R.K.; Sui, R.; Sallum, J.; van den Born, L.I.; Ajlan, R.; Khan, A.; den Hollander, A.I.; Cremers, F.P.M.; Mendola, J.D.; Bittner, A.K.; Dagnelie, G.; Schuchard, R.A.; Saperstein, D.A. Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: An open-label phase 1b trial. Lancet, 2014, 384(9953), 1513-1520. doi: 10.1016/S0140-6736(14)60153-7 PMID: 25030840
- Acland, G.M.; Aguirre, G.D.; Ray, J.; Zhang, Q.; Aleman, T.S.; Cideciyan, A.V.; Pearce-Kelling, S.E.; Anand, V.; Zeng, Y.; Maguire, A.M.; Jacobson, S.G.; Hauswirth, W.W.; Bennett, J. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet., 2001, 28(1), 92-95. doi: 10.1038/ng0501-92 PMID: 11326284
- Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N., Jr; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; Rossi, S.; Lyubarsky, A.; Arruda, V.R.; Konkle, B.; Stone, E.; Sun, J.; Jacobs, J.; DellOsso, L.; Hertle, R.; Ma, J.; Redmond, T.M.; Zhu, X.; Hauck, B.; Zelenaia, O.; Shindler, K.S.; Maguire, M.G.; Wright, J.F.; Volpe, N.J.; McDonnell, J.W.; Auricchio, A.; High, K.A.; Bennett, J. Safety and efficacy of gene transfer for Lebers congenital amaurosis. N. Engl. J. Med., 2008, 358(21), 2240-2248. doi: 10.1056/NEJMoa0802315 PMID: 18441370
- Mowat, F.M.; Breuwer, A.R.; Bartoe, J.T.; Annear, M.J.; Zhang, Z.; Smith, A.J.; Bainbridge, J.W.B.; Petersen-Jones, S.M.; Ali, R.R. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Ther., 2013, 20(5), 545-555. doi: 10.1038/gt.2012.63 PMID: 22951453
- Narfstro¨m, K.; Katz, M.L.; Bragadottir, R.; Seeliger, M.; Boulanger, A.; Redmond, T.M.; Caro, L.; Lai, C.M.; Rakoczy, P.E. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest. Ophthalmol. Vis. Sci., 2003, 44(4), 1663-1672. doi: 10.1167/iovs.02-0595 PMID: 12657607
- She, K.; Liu, Y.; Zhao, Q.; Jin, X.; Yang, Y.; Su, J.; Li, R.; Song, L.; Xiao, J.; Yao, S.; Lu, F.; Wei, Y.; Yang, Y. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct. Target. Ther., 2023, 8(1), 57. doi: 10.1038/s41392-022-01234-1 PMID: 36740702
- U.S.F.D.. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. 2017. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss
- Cideciyan, A.V.; Jacobson, S.G.; Beltran, W.A.; Sumaroka, A.; Swider, M.; Iwabe, S.; Roman, A.J.; Olivares, M.B.; Schwartz, S.B.; Komáromy, A.M.; Hauswirth, W.W.; Aguirre, G.D. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci., 2013, 110(6), E517-E525. doi: 10.1073/pnas.1218933110 PMID: 23341635
- Jacobson, S.G.; Cideciyan, A.V.; Roman, A.J.; Sumaroka, A.; Schwartz, S.B.; Heon, E.; Hauswirth, W.W. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med., 2015, 372(20), 1920-1926. doi: 10.1056/NEJMoa1412965 PMID: 25936984
- Bainbridge, J.W.B.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.M.; Beattie, S.G.; Gardner, P.J.; Feathers, K.L.; Luong, V.A.; Yzer, S.; Balaggan, K.; Viswanathan, A.; de Ravel, T.J.L.; Casteels, I.; Holder, G.E.; Tyler, N.; Fitzke, F.W.; Weleber, R.G.; Nardini, M.; Moore, A.T.; Thompson, D.A.; Petersen-Jones, S.M.; Michaelides, M.; van den Born, L.I.; Stockman, A.; Smith, A.J.; Rubin, G.; Ali, R.R. Long-term effect of gene therapy on Lebers congenital amaurosis. N. Engl. J. Med., 2015, 372(20), 1887-1897. doi: 10.1056/NEJMoa1414221 PMID: 25938638
- Wang, X.; Yu, C.; Tzekov, R.T.; Zhu, Y.; Li, W. The effect of human gene therapy for RPE65-associated Lebers congenital amaurosis on visual function: A systematic review and meta-analysis. Orphanet J. Rare Dis., 2020, 15(1), 49. doi: 10.1186/s13023-020-1304-1 PMID: 32059734
- Sengillo, J.D.; Gregori, N.Z.; Sisk, R.A.; Weng, C.Y.; Berrocal, A.M.; Davis, J.L.; Mendoza-Santiesteban, C.E.; Zheng, D.D.; Feuer, W.J.; Lam, B.L. Visual acuity, retinal morphology, and patients perceptions after voretigene neparovec-rzyl therapy for RPE65-associated retinal disease. Ophthalmol. Retina, 2022, 6(4), 273-283. doi: 10.1016/j.oret.2021.11.005 PMID: 34896323
- Rebelo Neves, E.; Carvalho, A.L.; Mesquita, T.; Paiva, C.; Alfaiate, M.; Figueira, J.; Murta, J.; Marques, J.P. Bilateral functional worsening following voretigene neparvovec therapy. Eye, 2023, 37(13), 2828-2829. doi: 10.1038/s41433-023-02411-4
- Kolomeyer, A.M.; Zarbin, M.A. Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv. Ophthalmol., 2014, 59(2), 134-165. doi: 10.1016/j.survophthal.2013.09.004 PMID: 24417953
- Dong, S.; Zhen, F.; Xu, H.; Li, Q.; Wang, J. Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. Ann. Transl. Med., 2021, 9(2), 152. doi: 10.21037/atm-20-8040 PMID: 33569454
- Ueki, Y.; Wang, J.; Chollangi, S.; Ash, J.D. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J. Neurochem., 2008, 105(3), 784-796. doi: 10.1111/j.1471-4159.2007.05180.x PMID: 18088375
- Joly, S.; Lange, C.; Thiersch, M.; Samardzija, M.; Grimm, C. Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J. Neurosci., 2008, 28(51), 13765-13774. doi: 10.1523/JNEUROSCI.5114-08.2008 PMID: 19091967
- Jorgensen, M.M.; de la Puente, P. Leukemia inhibitory factor: An important cytokine in pathologies and cancer. Biomolecules, 2022, 12(2), 217. doi: 10.3390/biom12020217 PMID: 35204717
- Yang, J.L.; Zou, T.D.; Yang, F.; Yang, Z.L.; Zhang, H.B. Inhibition of mTOR signaling by rapamycin protects photoreceptors from degeneration in rd1 mice. Zool. Res., 2021, 42(4), 482-486. doi: 10.24272/j.issn.2095-8137.2021.049 PMID: 34235896
- Yang, J.; Zou, T.; Yang, F.; Zhang, Z.; Sun, C.; Yang, Z.; Zhang, H. A quick protocol for the preparation of mouse retinal cryosections for immunohistochemistry. Open Biol., 2021, 11(7), 210076. doi: 10.1098/rsob.210076 PMID: 34315273
- Yang, J.; Chen, Y.; Zou, T.; Xue, B.; Yang, F.; Wang, X.; Huo, Y.; Yan, B.; Xu, Y.; He, S.; Yin, Y.; Wang, J.; Zhu, X.; Zhang, L.; Zhou, Y.; Tai, Z.; Shuai, P.; Yu, M.; Luo, Q.; Cheng, Y.; Gong, B.; Zhang, J.; Sun, X.; Lin, Y.; Zhang, H.; Yang, Z. Cholesterol homeostasis regulated by ABCA1 is critical for retinal ganglion cell survival. Sci. China Life Sci., 2022, 66(2), 211-25. PMID: 35829808
- Niwa, H.; Burdon, T.; Chambers, I.; Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev., 1998, 12(13), 2048-2060. doi: 10.1101/gad.12.13.2048 PMID: 9649508
- Tan, E.; Ding, X.Q.; Saadi, A.; Agarwal, N.; Naash, M.I.; Al-Ubaidi, M.R. Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci., 2004, 45(3), 764-768. doi: 10.1167/iovs.03-1114 PMID: 14985288
- Yamada, E.; Bastie, C.C.; Koga, H.; Wang, Y.; Cuervo, A.M.; Pessin, J.E. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep., 2012, 1(5), 557-569. doi: 10.1016/j.celrep.2012.03.014 PMID: 22745922
- Pratt, J.; Annabi, B. Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell. Signal., 2014, 26(5), 917-924. doi: 10.1016/j.cellsig.2014.01.012 PMID: 24462646
- Besirli, C.G.; Chinskey, N.D.; Zheng, Q.D.; Zacks, D.N. Autophagy activation in the injured photoreceptor inhibits fas-mediated apoptosis. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4193-4199. doi: 10.1167/iovs.10-7090 PMID: 21421874
- Das, G.; Shravage, B.V.; Baehrecke, E.H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol., 2012, 4(6), a008813. doi: 10.1101/cshperspect.a008813 PMID: 22661635
- He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43(1), 67-93. doi: 10.1146/annurev-genet-102808-114910 PMID: 19653858
- Li, S.; Gordon, W.C.; Bazan, N.G.; Jin, M. Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc. Natl. Acad. Sci., 2020, 117(50), 32114-32123. doi: 10.1073/pnas.2012623117 PMID: 33257550
- Smith, A.G.; Hooper, M.L. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol., 1987, 121(1), 1-9. doi: 10.1016/0012-1606(87)90132-1 PMID: 3569655
- Smith, A.G.; Heath, J.K.; Donaldson, D.D.; Wong, G.G.; Moreau, J.; Stahl, M.; Rogers, D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 1988, 336(6200), 688-690. doi: 10.1038/336688a0 PMID: 3143917
- Williams, R.L.; Hilton, D.J.; Pease, S.; Willson, T.A.; Stewart, C.L.; Gearing, D.P.; Wagner, E.F.; Metcalf, D.; Nicola, N.A.; Gough, N.M. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988, 336(6200), 684-687. doi: 10.1038/336684a0 PMID: 3143916
- Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C.; Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C. Differential role of Jak-STAT signaling in retinal degenerations. FASEB J., 2006, 20(13), 2411-2413. doi: 10.1096/fj.06-5895fje PMID: 16966486
- Schaeferhoff, K.; Michalakis, S.; Tanimoto, N.; Fischer, M.D.; Becirovic, E.; Beck, S.C.; Huber, G.; Rieger, N.; Riess, O.; Wissinger, B.; Biel, M.; Seeliger, M.W.; Bonin, M. Induction of STAT3-related genes in fast degenerating cone photoreceptors of cpfl1 mice. Cell. Mol. Life Sci., 2010, 67(18), 3173-3186. doi: 10.1007/s00018-010-0376-9 PMID: 20467778
- Jiang, K.; Wright, K.L.; Zhu, P.; Szego, M.J.; Bramall, A.N.; Hauswirth, W.W.; Li, Q.; Egan, S.E.; McInnes, R.R. STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proc. Natl. Acad. Sci., 2014, 111(52), E5716-E5723. doi: 10.1073/pnas.1411248112 PMID: 25512545
- You, L.; Wang, Z.; Li, H.; Shou, J.; Jing, Z.; Xie, J.; Sui, X.; Pan, H.; Han, W. The role of STAT3 in autophagy. Autophagy, 2015, 11(5), 729-739. doi: 10.1080/15548627.2015.1017192 PMID: 25951043
- Intartaglia, D.; Giamundo, G.; Naso, F.; Nusco, E.; Di Giulio, S.; Salierno, F.G.; Polishchuk, E.; Conte, I. Induction of autophagy promotes clearance of RHOP23H aggregates and protects from retinal degeneration. Front. Aging Neurosci., 2022, 14, 878958. doi: 10.3389/fnagi.2022.878958 PMID: 35847673
- Pang, J.; Chang, B.; Kumar, A.; Nusinowitz, S.; Noorwez, S.M.; Li, J.; Rani, A.; Foster, T.C.; Chiodo, V.A.; Doyle, T.; Li, H.; Malhotra, R.; Teusner, J.T.; McDowell, J.H.; Min, S.H.; Li, Q.; Kaushal, S.; Hauswirth, W.W. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol. Ther., 2006, 13(3), 565-572. doi: 10.1016/j.ymthe.2005.09.001 PMID: 16223604
- Labonté, E.D.; Camarota, L.M.; Rojas, J.C.; Jandacek, R.J.; Gilham, D.E.; Davies, J.P.; Ioannou, Y.A.; Tso, P.; Hui, D.Y.; Howles, P.N. Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1−/− mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(4), G776-G783. doi: 10.1152/ajpgi.90275.2008 PMID: 18718999
- Naples, M.; Baker, C.; Lino, M.; Iqbal, J.; Hussain, M.M.; Adeli, K. Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(9), G1043-G1052. doi: 10.1152/ajpgi.00250.2011 PMID: 22345552
Supplementary files
