Bile Acid-conjugate as a Promising Anticancer Agent: Recent Progress
- Authors: Rathod N.1, Mishra S.2
-
Affiliations:
- Department of Biotechnology and Bioengineering,, Indian Institute of Advanced Research
- Department of Biotechnology and Bioengineering,, Indian Institute of Advanced Research,
- Issue: Vol 31, No 26 (2024)
- Pages: 4160-4179
- Section: Anti-Infectives and Infectious Diseases
- URL: https://jdigitaldiagnostics.com/0929-8673/article/view/644945
- DOI: https://doi.org/10.2174/0109298673274040231121113410
- ID: 644945
Cite item
Full Text
Abstract
Bile acids have outstanding chemistry due to their amphiphilic nature and have received a lot of interest in the last few decades in the fields of biomedicine, pharmacology, and supramolecular applications. Bile acids are highly sought after by scientists looking for diverse and effective biological activity due to their chirality, rigidity, and hydroxyl group. The hydroxyl group makes it simple to alter the structure in a way that improves bioactivity and bioavailability. Bile acid-bioactive molecule conjugates are compounds in which a bile acid is linked to a bioactive molecule by a linker in order to increase the bioactivity of the bioactive molecule against the target cancer cells. This method has been used to improve the therapeutic efficacy of cytotoxic drugs while reducing their adverse side effects. These new bile acid conjugates are gaining attention because they overcome bioavailability and stability issues. The design, synthesis, and anticancer effectiveness of various bile acid conjugates are discussed together with recent advances in understanding in this review.
About the authors
Neha Rathod
Department of Biotechnology and Bioengineering,, Indian Institute of Advanced Research
Email: info@benthamscience.net
Satyendra Mishra
Department of Biotechnology and Bioengineering,, Indian Institute of Advanced Research,
Author for correspondence.
Email: info@benthamscience.net
References
- Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72. doi: 10.1038/nrc1529 PMID: 15630416
- Bach, P.B.; Jett, J.R.; Pastorino, U.; Tockman, M.S.; Swensen, S.J.; Begg, C.B. Computed tomography screening and lung cancer outcomes. JAMA, 2007, 297(9), 953-961. doi: 10.1001/jama.297.9.953 PMID: 17341709
- Gibbs, J.B. Mechanism-based target identification and drug discovery in cancer research Science (80-), 2000, 287, 1969-1973. doi: 10.1126/science.287.5460.1969
- Arve, L.; Voigt, T.; Waldmann, H. Charting biological and chemical space: PSSC and SCONP as guiding principles for the development of compound collections based on natural product scaffolds. QSAR Comb. Sci., 2006, 25(5-6), 449-456. doi: 10.1002/qsar.200540213
- Gali, R.; Banothu, J.; Porika, M.; Velpula, R.; Hnamte, S.; Bavantula, R.; Abbagani, S.; Busi, S. Indolylmethylene benzohthiazolo2,3-bquinazolinones: Synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett., 2014, 24(17), 4239-4242. doi: 10.1016/j.bmcl.2014.07.030 PMID: 25096298
- Sørlie, T. Molecular portraits of breast cancer: Tumour subtypes as distinct disease entities. Eur. J. Cancer, 2004, 40(18), 2667-2675. doi: 10.1016/j.ejca.2004.08.021 PMID: 15571950
- Siegel, O.J.; Ward, R.; Brawley, E. Detection of occult tumor cells in peripheral blood from patients with small cell lung cancer by reverse transcriptase-polymerase chain reaction, A Cancer J. Cancer Clin., 2011, 61, 212-236. doi: 10.3322/caac.20121 PMID: 21685461
- Chen, T.G.M.; Zeng, Q. G, G. Deisign thinking. Med. Res. Rev., 2008, 28, 954-974. doi: 10.1002/med.20131 PMID: 18642351
- Martinez, J.D.; Stratagoules, E.D.; LaRue, J.M.; Powell, A.A.; Gause, P.R.; Craven, M.T.; Payne, C.M.; Powell, M.B.; Gerner, E.W.; Earnest, D.L. Different bile acids exhibit distinct biological effects: The tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr. Cancer, 1998, 31(2), 111-118. doi: 10.1080/01635589809514689 PMID: 9770722
- Brady, B.H.; Brady, L.M.; W, David, D. Biochemical journal immediate publication. Biochem. J., 1996, 316, 765-769. doi: 10.1042/bj3160765 PMID: 8670150
- Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell, 1995, 80(2), 225-236. doi: 10.1016/0092-8674(95)90405-0 PMID: 7834742
- Bayewitch, M.L.; Nevo, I.; Avidor-Reiss, T.; Levy, R.; Simonds, W.F.; Vogel, Z. Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of G(i/o)-coupled receptors: changes in detergent solubility are in correlation with onset of adenylyl cyclase superactivation. Mol. Pharmacol., 2000, 57(4), 820-825. doi: 10.1124/mol.57.4.820 PMID: 10727531
- Faubion, W.A.; Guicciardi, M.E.; Miyoshi, H.; Bronk, S.F.; Roberts, P.J.; Svingen, P.A.; Kaufmann, S.H.; Gores, G.J. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J. Clin. Invest., 1999, 103(1), 137-145. doi: 10.1172/JCI4765 PMID: 9884343
- Mahmoud, N.N.; Dannenberg, A.J.; Bilinski, R.T.; Mestre, J.R.; Chadburn, A.; Churchill, M.; Martucci, C.; Bertagnolli, M.M. Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis, 1999, 20(2), 299-303. doi: 10.1093/carcin/20.2.299 PMID: 10069468
- Sodeman, T.; Bronk, S.F.; Roberts, P.J.; Miyoshi, H.; Gores, G.J. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278(6), G992-G999. doi: 10.1152/ajpgi.2000.278.6.G992 PMID: 10859230
- Hirano, F.; Tanaka, H.; Hirano, Y.; Hiramoto, M.; Handa, H.; Makino, I.; Scheidereit, C. Functional interference of sp1 and nf-κb through the same DNA binding site. Carcinogenesis, 1996, 17, 427-433. doi: 10.1093/carcin/17.3.427 PMID: 8631127
- Glinghammar, B.; Holmberg, K.; Rafter, J. Effects of colonic lumenal components on AP-1-dependent gene transcription in cultured human colon carcinoma cells. Carcinogenesis, 1999, 20(6), 969-976. doi: 10.1093/carcin/20.6.969 PMID: 10357775
- Song, S.; Byrd, J.C.; Koo, J.S.; Bresalier, R.S. Bile acids induce MUC2 overexpression in human colon carcinoma cells. Cancer, 2005, 103(8), 1606-1614. doi: 10.1002/cncr.21015 PMID: 15754327
- Makishima, M.; Okamoto, A.Y.; Repa, J.J.; Tu, H.; Learned, R.M.; Luk, A.; Hull, M.V.; Lustig, K.D.; Mangelsdorf, D.J.; Shan, B. Identification of a nuclear receptor for bile acids. Science, 1999, 284(5418), 1362-1365. doi: 10.1126/science.284.5418.1362 PMID: 10334992
- Peet, D.J.; Janowski, B.A.; Dawson, A.; Shen, T.; Perlmutter, D.H. 17. C, j. Sippel, 16. j. R. Crowther, ELISA. Theory Pract., 1999, 8284, 1365-1368. doi: 10.1126/science.284.5418.1365
- Wang, H.; Chen, J.; Hollister, K.; Sowers, L.C.; Forman, B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell, 1999, 3, 543-553. doi: 10.1016/S1097-2765(00)80348-2 PMID: 10360171
- Song, C.S.; Echchgadda, I.; Baek, B.S.; Ahn, S.C.; Oh, T.; Roy, A.K.; Chatterjee, B. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J. Biol. Chem., 2001, 276(45), 42549-42556. doi: 10.1074/jbc.M107557200 PMID: 11533040
- Zhang, F.; Subbaramaiah, K.; Altorki, N.; Dannenberg, A.J. Dihydroxy bile acids activate the transcription of cyclooxygenase-2. J. Biol. Chem., 1998, 273(4), 2424-2428. doi: 10.1074/jbc.273.4.2424 PMID: 9442092
- Qiao, D.; Stratagouleas, E.D.; Martinez, J.D. Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis, 2001, 22(1), 35-41. doi: 10.1093/carcin/22.1.35 PMID: 11159738
- Qiao, D.; Chen, W.; Stratagoules, E.D.; Martinez, J.D. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J. Biol. Chem., 2000, 275(20), 15090-15098. doi: 10.1074/jbc.M908890199 PMID: 10748108
- Powolny, A.; Xu, J.; Loo, G. Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int. J. Biochem. Cell Biol., 2001, 33(2), 193-203. doi: 10.1016/S1357-2725(00)00080-7 PMID: 11240376
- Qiao, L.; Studer, E.; Leach, K.; McKinstry, R.; Gupta, S.; Decker, R.; Kukreja, R.; Valerie, K.; Nagarkatti, P.; Deiry, W.E.; Molkentin, J.; Schmidt-Ullrich, R.; Fisher, P.B.; Grant, S.; Hylemon, P.B.; Dent, P. Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol. Biol. Cell, 2001, 12(9), 2629-2645. doi: 10.1091/mbc.12.9.2629 PMID: 11553704
- Reinehr, R.; Becker, S.; Wettstein, M.; Häussinger, D. Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology, 2004, 127(5), 1540-1557. doi: 10.1053/j.gastro.2004.08.056 PMID: 15521021
- Di Toro, R.; Campana, G.; Murari, G.; Spampinato, S. Effects of specific bile acids on c-fos messenger RNA levels in human colon carcinoma Caco-2 cells. Eur. J. Pharm. Sci., 2000, 11(4), 291-298. doi: 10.1016/S0928-0987(00)00111-1 PMID: 11033072
- Rust, C.; Karnitz, L.M.; Paya, C.V.; Moscat, J.; Simari, R.D.; Gores, G.J. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J. Biol. Chem., 2000, 275(26), 20210-20216. doi: 10.1074/jbc.M909992199 PMID: 10770953
- Yao, R.; Cooper, G.M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science (80-), 1995, 267, , 2003-2006. doi: 10.1126/science.7701324
- Misra, S.; Ujházy, P.; Gatmaitan, Z.; Varticovski, L.; Arias, I.M. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J. Biol. Chem., 1998, 273(41), 26638-26644. doi: 10.1074/jbc.273.41.26638 PMID: 9756904
- Earnest, D.L.; Holubec, H.; Wali, R.K.; Jolley, C.S.; Bissonette, M.; Bhattacharyya, A.K.; Roy, H.; Khare, S.; Brasitus, T.A. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res., 1994, 54(19), 5071-5074. PMID: 7923119
- Silva, R.F.M.; Rodrigues, C.M.P.; Brites, D. Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J. Hepatol., 2001, 34(3), 402-408. doi: 10.1016/S0168-8278(01)00015-0 PMID: 11322201
- Heuman, D.M.; Mills, A.S.; McCall, J.; Hylemon, P.B.; Pandak, W.M.; Vlahcevic, Z.R. Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. Gastroenterology, 1991, 100(1), 203-211. doi: 10.1016/0016-5085(91)90602-H PMID: 1983822
- Heuman, D.M.; Bajaj, R. Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts. Gastroenterology, 1994, 106(5), 1333-1341. doi: 10.1016/0016-5085(94)90027-2 PMID: 8174892
- Rodrigues, C.M.; Fan, G.; Ma, X.; Kren, B.T.; Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest., 1998, 101(12), 2790-2799. doi: 10.1172/JCI1325 PMID: 9637713
- Ikegami, T.; Matsuzaki, Y.; Al Rashid, M.; Ceryak, S.; Zhang, Y.; Bouscarel, B. Enhancement of DNA topoisomerase I inhibitorinduced apoptosis by ursodeoxycholic acid. Mol. Cancer Ther., 2006, 5(1), 68-79. doi: 10.1158/1535-7163.MCT-05-0107 PMID: 16432164
- Kuhajda, K.; Kandrac, J.; Kevresan, S.; Mikov, M.; Fawcett, J.P. Structure and origin of bile acids: An overview. Eur. J. Drug Metab. Pharmacokinet., 2006, 31(3), 135-143. doi: 10.1007/BF03190710 PMID: 17136858
- Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J. Org. Chem., 2004, 2004(16), 3385-3399. doi: 10.1002/ejoc.200300699
- de Aguiar Vallim, T.Q.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab., 2013, 17(5), 657-669. doi: 10.1016/j.cmet.2013.03.013 PMID: 23602448
- Monte, M.J.; Marin, J.J.G.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol., 2009, 15(7), 804-816. doi: 10.3748/wjg.15.804 PMID: 19230041
- Boyer, J.L. Bile formation and secretion. Compr. Physiol., 2013, 3(3), 1035-1078. doi: 10.1002/cphy.c120027 PMID: 23897680
- Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch Inter Med, 1999, 159, 2647-2658. Available from: http://archinte.jamanetwork.com/
- Nurunnabi, M.; Khatun, Z.; Revuri, V.; Nafiujjaman, M.; Cha, S.; Cho, S.; Moo Huh, K.; Lee, Y. Design and strategies for bile acid mediated therapy and imaging. RSC Advances, 2016, 6(78), 73986-74002. doi: 10.1039/C6RA10978K
- Enhsen, A.; Kramer, W.; Wess, G. Bile acids in drug discovery. Int. J. Immunopharmacol., 1998, 3, 409-418. doi: 10.1016/S1359-6446(96)10046-5
- Tamminen, J.; Kolehmainen, E. Bile acids as building blocks of supramolecular hosts. Molecules, 2001, 6(12), 21-46. doi: 10.3390/60100021
- Zhu, X.X.; Nichifor, M. Polymeric materials containing bile acids. Acc. Chem. Res., 2002, 35(7), 539-546. doi: 10.1021/ar0101180 PMID: 12118993
- Fiorucci, S.; Distrutti, E. Chapter_ThePharmacologyOf BileAcids_REV.pdf, 2019, 256, 3-18. Available from: doi: 10.1007/164_2019_238
- Hegyi, P.; Maléth, J.; Walters, J.R.; Hofmann, A.F.; Keely, S.J. Guts and gall: Bile acids in regulation of intestinal epithelial function in health and disease. Physiol. Rev., 2018, 98(4), 1983-2023. doi: 10.1152/physrev.00054.2017 PMID: 30067158
- Li, T.; Chiang, J.Y.L. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev., 2014, 66(4), 948-983. doi: 10.1124/pr.113.008201 PMID: 25073467
- Fiorucci, S.; Baldoni, M.; Ricci, P.; Zampella, A.; Distrutti, E.; Biagioli, M. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Curr. Opin. Pharmacol., 2020, 53, 45-54. doi: 10.1016/j.coph.2020.04.008 PMID: 32480317
- Zhou, H.; Hylemon, P.B. Bile acids are nutrient signaling hormones. Steroids, 2014, 86, 62-68. doi: 10.1016/j.steroids.2014.04.016 PMID: 24819989
- Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology, 2017, 152(7), 1679-1694.e3. doi: 10.1053/j.gastro.2017.01.055 PMID: 28214524
- Vítek, L.; Haluzík, M. The role of bile acids in metabolic regulation. J. Endocrinol., 2016, 228(3), R85-R96. doi: 10.1530/JOE-15-0469 PMID: 26733603
- Sánchez-García, A.; Sahebkar, A.; Simental-Mendía, M.; Simental-Mendía, L.E. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol. Res., 2018, 135, 144-149. doi: 10.1016/j.phrs.2018.08.008 PMID: 30099154
- Davis, A.P.; Cholaphanes et al.; steroids as structural components in molecular engineering. Chem. Soc. Rev., 1993, 22(4), 243-253. doi: 10.1039/cs9932200243
- Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci., 2004, 87, 1666-1683.
- Maldonado-Valderrama, J.; Wilde, P.; MacIerzanka, A.; MacKie, A. The role of bile salts in digestion. Adv. Colloid Interface Sci., 2011, 36-46. doi: 10.1016/j.cis.2010.12.002
- Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Intestinal absorption of bile acids in health and disease. Compr. Physiol., 2019, 10(1), 21-56. doi: 10.1002/cphy.c190007 PMID: 31853951
- Sarkar, A.; Ye, A.; Singh, H. On the role of bile salts in the digestion of emulsified lipids ood Hydrocoll, 2016, 60, 77-84. doi: 10.1016/j.foodhyd.2016.03.018
- Sharma, R.; Long, A.; Gilmer, J.F. Advances in bile acid medicinal chemistry. Curr. Med. Chem., 2011, 18(26), 4029-4052. doi: 10.2174/092986711796957266 PMID: 21824088
- Yamanashi, Y.; Tazuma, H. Takikawa, Bile acids in gastroenterology: Basic and clinical, bile acids gastroenterol; Basic Clin, 2017, pp. 1-209. doi: 10.1007/978-4-431-56062-3
- Mishra, R.; Mishra, S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids, 2020, 159, 108639. doi: 10.1016/j.steroids.2020.108639 PMID: 32222373
- Singh, C.; Hassam, M.; Verma, V.P.; Singh, A.S.; Naikade, N.K.; Puri, S.K.; Maulik, P.R.; Kant, R. Bile acid-based 1,2,4-trioxanes: Synthesis and antimalarial assessment. J. Med. Chem., 2012, 55(23), 10662-10673. doi: 10.1021/jm301323k PMID: 23163291
- Tolle-Sander, S.; Lentz, K.A.; Maeda, D.Y.; Coop, A.; Polli, J.E. Increased acyclovir oral bioavailability via a bile acid conjugate. Mol. Pharm., 2004, 1(1), 40-48. doi: 10.1021/mp034010t PMID: 15832499
- Evangelakos, I.; Heeren, J.; Verkade, E.; Kuipers, F. Role of bile acids in inflammatory liver diseases. Semin. Immunopathol., 2021, 43(4), 577-590. doi: 10.1007/s00281-021-00869-6 PMID: 34236487
- Antinarelli, L.M.R.; Carmo, A.M.L.; Pavan, F.R.; Leite, C.Q.F.; Da Silva, A.D.; Coimbra, E.S.; Salunke, D.B. Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Org. Med. Chem. Lett., 2012, 2(1), 16. doi: 10.1186/2191-2858-2-16 PMID: 22551300
- Santos, J.A.; Polonini, H.C.; Suzuki, É.Y.; Raposo, N.R.B.; da Silva, A.D. Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents. Steroids, 2015, 98, 114-121. doi: 10.1016/j.steroids.2015.03.009 PMID: 25814069
- Agarwal, D.S.; Anantaraju, H.S.; Sriram, D.; Yogeeswari, P.; Nanjegowda, S.H.; Mallu, P.; Sakhuja, R. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents. Steroids, 2016, 107, 87-97. doi: 10.1016/j.steroids.2015.12.022 PMID: 26748355
- Brossard, D.; El Kihel, L.; Clément, M.; Sebbahi, W.; Khalid, M.; Roussakis, C.; Rault, S. Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines. Eur. J. Med. Chem., 2010, 45(7), 2912-2918. doi: 10.1016/j.ejmech.2010.03.016 PMID: 20381215
- Navacchia, M.; Marchesi, E.; Mari, L.; Chinaglia, N.; Gallerani, E.; Gavioli, R.; Capobianco, M.; Perrone, D. Rational design of nucleoside-bile acid conjugates incorporating a triazole moiety for anticancer evaluation and SAR exploration. Molecules, 2017, 22(10), 1710. doi: 10.3390/molecules22101710 PMID: 29023408
- Agarwal, D.S.; Siva Krishna, V.; Sriram, D.; Yogeeswari, P.; Sakhuja, R. Clickable conjugates of bile acids and nucleosides: Synthesis, characterization, in vitro anticancer and antituberculosis studies. Steroids, 2018, 139, 35-44. doi: 10.1016/j.steroids.2018.09.006 PMID: 30236620
- Yan Li; Zhen Zhang; Yong Ju; Chang-Qi Zhao. Design, synthesis and antitumor activity of dimeric bile acid-amino acid conjugates. Lett. Org. Chem., 2007, 4(6), 414-418. doi: 10.2174/157017807781467542
- Patel, S.; Challagundla, N.; Rajput, R.A.; Mishra, S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg. Chem., 2022, 127, 106036. doi: 10.1016/j.bioorg.2022.106036 PMID: 35878450
- Sreekanth, V.; Bansal, S.; Motiani, R.K.; Kundu, S.; Muppu, S.K.; Majumdar, T.D.; Panjamurthy, K.; Sengupta, S.; Bajaj, A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug. Chem., 2013, 24(9), 1468-1484. doi: 10.1021/bc300664k PMID: 23909664
- Varshosaz, J.; Sadri, F.; Rostami, M.; Mirian, M.; Taymouri, S. Synthesis of pectin-deoxycholic acid conjugate for targeted delivery of anticancer drugs in hepatocellular carcinoma. Int. J. Biol. Macromol., 2019, 139, 665-677. doi: 10.1016/j.ijbiomac.2019.07.225 PMID: 31377298
- Agarwal, D.S.; Singh, R.P.; Lohitesh, K.; Jha, P.N.; Chowdhury, R.; Sakhuja, R. Synthesis and evaluation of bile acid amides of α-cyanostilbenes as anticancer agents. Mol. Divers., 2018, 22(2), 305-321. doi: 10.1007/s11030-017-9797-9 PMID: 29238888
- Sievänen, E. Exploitation of bile acid transport systems in prodrug design. Molecules, 2007, 12(8), 1859-1889. doi: 10.3390/12081859 PMID: 17960093
- von Geldern, T.W.; Tu, N.; Kym, P.R.; Link, J.T.; Jae, H.S.; Lai, C.; Apelqvist, T.; Rhonnstad, P.; Hagberg, L.; Koehler, K.; Grynfarb, M.; Goos-Nilsson, A.; Sandberg, J.; Österlund, M.; Barkhem, T.; Höglund, M.; Wang, J.; Fung, S.; Wilcox, D.; Nguyen, P.; Jakob, C.; Hutchins, C.; Färnegårdh, M.; Kauppi, B.; Öhman, L.; Jacobson, P.B. Liver-selective glucocorticoid antagonists: A novel treatment for type 2 diabetes. J. Med. Chem., 2004, 47(17), 4213-4230. doi: 10.1021/jm0400045 PMID: 15293993
- Gabano, E.; Ravera, M.; Osella, D. The drug targeting and delivery approach applied to pt-antitumour complexes. A coordination point of view. Curr. Med. Chem., 2009, 16(34), 4544-4580. doi: 10.2174/092986709789760661 PMID: 19903151
- Jurček, O.; Wimmer, Z.; Svobodová, H.; Bennettová, B.; Kolehmainen, E.; Draar, P. Preparation and preliminary biological screening of cholic acidjuvenoid conjugates. Steroids, 2009, 74(9), 779-785. doi: 10.1016/j.steroids.2009.04.006 PMID: 19394354
- Rohacova, J.; Marín, M.L.; Martinez-Romero, A.; Diaz, L.; OConnor, J.E.; Gomez-Lechon, M.J.; Donato, M.T.; Castell, J.V.; Miranda, M.A. Fluorescent benzofurazan-cholic acid conjugates for in vitro assessment of bile acid uptake and its modulation by drugs. ChemMedChem, 2009, 4(3), 466-472. doi: 10.1002/cmdc.200800383 PMID: 19173214
- Chen, D.; Wang, X.; Chen, L.; He, J.; Miao, Z.; Shen, J. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization. Acta Pharmacol. Sin., 2011, 32(5), 664-672. doi: 10.1038/aps.2011.7 PMID: 21516131
- Popadyuk, I.I.; Markov, A.V.; Morozova, E.A.; Babich, V.O.; Salomatina, O.V.; Logashenko, E.B.; Zenkova, M.A.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis and evaluation of antitumor, anti-inflammatory and analgesic activity of novel deoxycholic acid derivatives bearing aryl- or hetarylsulfanyl moieties at the C-3 position. Steroids, 2017, 127, 1-12. doi: 10.1016/j.steroids.2017.08.016 PMID: 28887170
- de Sena Pereira, V.S.; Silva de Oliveira, C.B.; Fumagalli, F.; da Silva Emery, F.; da Silva, N.B.; de Andrade-Neto, V.F. Cytotoxicity, hemolysis and in vivo acute toxicity of 2-hydroxy-3-anilino-1,4-naphthoquinone derivatives. Toxicol. Rep., 2016, 3, 756-762. doi: 10.1016/j.toxrep.2016.09.007 PMID: 28959602
- Singh, M.; Bansal, S.; Kundu, S.; Bhargava, P.; Singh, A.; Motiani, R.K.; Shyam, R.; Sreekanth, V.; Sengupta, S.; Bajaj, A. Synthesis, structureactivity relationship, and mechanistic investigation of lithocholic acidamphiphiles for colon cancer therapy. MedChemComm, 2015, 6(1), 192-201. doi: 10.1039/C4MD00223G PMID: 25685308
- Kuhajda, K.N.; Cvjetićanin, S.M.; Djurendić, E.A.; Sakač, M.N.; Gai, K.M.P.; Kojić, V.V.; Bogdanović, G.M. Sinteza i citotoksična aktivnost serije novih derivata učnih kiselina. Hem. Ind., 2009, 63, 313-318. doi: 10.2298/HEMIND0904313K
- Ren, J.; Wang, Y.; Wang, J.; Lin, J.; Wei, K.; Huang, R. Synthesis and antitumor activity of N-sulfonyl-3,7-dioxo-5β-cholan-24-amides, ursodeoxycholic acid derivatives. Steroids, 2013, 78(1), 53-58. doi: 10.1016/j.steroids.2012.09.009 PMID: 23127818
- Májer, F.; Sharma, R.; Mullins, C.; Keogh, L.; Phipps, S.; Duggan, S.; Kelleher, D.; Keely, S.; Long, A.; Radics, G.; Wang, J.; Gilmer, J.F. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid. Bioorg. Med. Chem., 2014, 22(1), 256-268. doi: 10.1016/j.bmc.2013.11.029 PMID: 24332653
- Huang, Y.; Chen, S.; Cui, J.; Gan, C.; Liu, Z.; Wei, Y.; Song, H. Synthesis and cytotoxicity of A-homo-lactam derivatives of cholic acid and 7-deoxycholic acid. Steroids, 2011, 76(7), 690-694. doi: 10.1016/j.steroids.2011.03.009 PMID: 21440565
- Kramer, W. Transporters, Trojan horses and therapeutics: Suitability of bile acid and peptide transporters for drug delivery. Biol. Chem., 2011, 392(1-2), 77-94. doi: 10.1515/bc.2011.017 PMID: 21194371
- Stojančević, M.; Pavlović, N.; Goločorbin-Kon, S.; Mikov, M. Application of bile acids in drug formulation and delivery. Front. Life Sci., 2013, 7(3-4), 112-122. doi: 10.1080/21553769.2013.879925
- Garidel, P.; Hildebrand, A.; Knauf, K.; Blume, A. Membranolytic activity of bile salts: Influence of biological membrane properties and composition. Molecules, 2007, 12(10), 2292-2326. doi: 10.3390/12102292 PMID: 17978759
- Moghimipour, E.; Ameri, A.; Handali, S. Absorption-enhancing effects of bile salts. Molecules, 2015, 20(8), 14451-14473. doi: 10.3390/molecules200814451 PMID: 26266402
- Aburahma, M.H. Bile salts-containing vesicles: Promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv., 2014, 23(6), 1-21. doi: 10.3109/10717544.2014.976892 PMID: 25390191
- Pinto Reis, C.; Silva, C.; Martinho, N.; Rosado, C. Drug carriers for oral delivery of peptides and proteins: Accomplishments and future perspectives. Ther. Deliv., 2013, 4(2), 251-265. doi: 10.4155/tde.12.143 PMID: 23343163
- Elnaggar, Y. Multifaceted applications of bile salts in pharmacy: An emphasis on nanomedicine. Int. J. Nanomedicine, 2015, 10, 3955-3971. doi: 10.2147/IJN.S82558 PMID: 26109855
- Wu, D.; Ji, S.; Wu, Y.; Ju, Y.; Zhao, Y. Design, synthesis, and antitumor activity of bile acidpolyaminenucleoside conjugates. Bioorg. Med. Chem. Lett., 2007, 17(11), 2983-2986. doi: 10.1016/j.bmcl.2007.03.067 PMID: 17416522
- Letis, A.S.; Seo, E.J.; Nikolaropoulos, S.S.; Efferth, T.; Giannis, A.; Fousteris, M.A. Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg. Med. Chem., 2017, 25(13), 3357-3367. doi: 10.1016/j.bmc.2017.04.021 PMID: 28456567
- Marchesi, E.; Chinaglia, N.; Capobianco, M.L.; Marchetti, P.; Huang, T.E.; Weng, H.C.; Guh, J.H.; Hsu, L.C.; Perrone, D.; Navacchia, M.L. Dihydroartemisininbile acid hybridization as an effective approach to enhance dihydroartemisinin anticancer activity. ChemMedChem, 2019, 14(7), 779-787. doi: 10.1002/cmdc.201800756 PMID: 30724466
- Huang, T.E.; Deng, Y.N.; Hsu, J.L.; Leu, W.J.; Marchesi, E.; Capobianco, M.L.; Marchetti, P.; Navacchia, M.L.; Guh, J.H.; Perrone, D.; Hsu, L.C. Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells. Front. Pharmacol., 2020, 11, 599067. doi: 10.3389/fphar.2020.599067 PMID: 33343369
- Juráek, M.; Dubák, P.; Sedlák, D.; Dvořáková, H.; Hajdúch, M.; Bartůněk, P.; Draar, P. Preparation, preliminary screening of new types of steroid conjugates and their activities on steroid receptors. Steroids, 2013, 78(3), 356-361. doi: 10.1016/j.steroids.2012.11.016
- Brard, L.; Granai, C.O.; Swamy, N. Iron chelators deferoxamine and diethylenetriamine pentaacetic acid induce apoptosis in ovarian carcinoma. Gynecol. Oncol., 2006, 100(1), 116-127. doi: 10.1016/j.ygyno.2005.07.129 PMID: 16203029
- Chong, H.S.; Song, H.A.; Ma, X.; Lim, S.; Sun, X.; Mhaske, S.B. Bile acid-based polyaminocarboxylate conjugates as targeted antitumor agents. Chem. Commun. , 2009, 21(21), 3011-3013. doi: 10.1039/b823000e PMID: 19462070
- Incerti, M.; Tognolini, M.; Russo, S.; Pala, D.; Giorgio, C.; Hassan-Mohamed, I.; Noberini, R.; Pasquale, E.B.; Vicini, P.; Piersanti, S.; Rivara, S.; Barocelli, E.; Mor, M.; Lodola, A. Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J. Med. Chem., 2013, 56(7), 2936-2947. doi: 10.1021/jm301890k PMID: 23489211
- Liu, Y.Q.; Li, W.Q.; Morris-Natschke, S.L.; Qian, K.; Yang, L.; Zhu, G.X.; Wu, X.B.; Chen, A.L.; Zhang, S.Y.; Nan, X.; Lee, K.H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev., 2015, 35(4), 753-789. doi: 10.1002/med.21342 PMID: 25808858
- Xiao, L.; Zhou, Y.; Zhang, X.; Ding, Y.; Li, Q. Transporter-targeted bile acid-camptothecin conjugate for improved oral absorptio. Chem. Pharm. Bull. , 2019, 67(10), 1082-1087. doi: 10.1248/cpb.c19-00341
- Rais, R.; Fletcher, S.; Polli, J.E. Synthesis and in vitro evaluation of gabapentin prodrugs that target the human apical sodium-dependent bile acid transporter (hASBT). J. Pharm. Sci., 2011, 100(3), 1184-1195. doi: 10.1002/jps.22332 PMID: 20848648
- Bennett, M.I.; Simpson, K.H. Gabapentin in the treatment of neuropathic pain. Palliat. Med., 2004, 18(1), 5-11. doi: 10.1191/0269216304pm845ra PMID: 14982201
- Publication, A. Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology; Hangzhou 310014. China, , 2019. doi: 10.1248/cpb.c19-00341
- Kullak-Ublick, G.A.; Glasa, J.; Böker, C.; Oswald, M.; Grützner, U.; Hagenbuch, B.; Stieger, B.; Meier, P.J.; Beuers, U.; Kramer, W.; Wess, G.; Paumgartner, G. Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology, 1997, 113(4), 1295-1305. doi: 10.1053/gast.1997.v113.pm9322525 PMID: 9322525
- Roda, A.; Cerrè, C.; Manetta, A.C.; Cainelli, G.; Umani-Ronchi, A.; Panunzio, M. Synthesis and physicochemical, biological, and pharmacological properties of new bile acids amidated with cyclic amino acids. J. Med. Chem., 1996, 39(11), 2270-2276. doi: 10.1021/jm9508503 PMID: 8667370
- Navacchia, M.L.; Fraix, A.; Chinaglia, N.; Gallerani, E.; Perrone, D.; Cardile, V.; Graziano, A.C.E.; Capobianco, M.L.; Sortino, S. NO photoreleaser-deoxyadenosine and - bile acid derivative bioconjugates as novel potential photochemotherapeutics 2016, 2-6. doi: 10.1021/acsmedchemlett.6b00257
- Dalpiaz, A.; Paganetto, G.; Pavan, B.; Fogagnolo, M.; Medici, A.; Beggiato, S.; Perrone, D. Zidovudine and ursodeoxycholic acid conjugation: Design of a new prodrug potentially able to bypass the active efflux transport systems of the central nervous system. Mol. Pharm., 2012, 9(4), 957-968. doi: 10.1021/mp200565g PMID: 22356133
- Hryniewicka, A.; Łotowski, Z.; Seroka, B.; Witkowski, S.; Morzycki, J.W. Synthesis of a cisplatin derivative from lithocholic acid. Tetrahedron, 2018, 74(38), 5392-5398. doi: 10.1016/j.tet.2018.01.007
- Park, K.; Kim, Y.S.; Lee, G.Y.; Nam, J.O.; Lee, S.K.; Park, R.W.; Kim, S.Y.; Kim, I.S.; Byun, Y. Antiangiogenic effect of bile acid acylated heparin derivative. Pharm. Res., 2006, 24(1), 176-185. doi: 10.1007/s11095-006-9139-6 PMID: 17109210
Supplementary files
