Aging and Diabetic Kidney Disease: Emerging Pathogenetic Mechanisms and Clinical Implications
- Authors: Chen Y.1, Kanwar Y.2, Chen X.3, Zhan M.4
-
Affiliations:
- School of Medicine, Ningbo University
- Department of Pathology, Feinberg School of Medicine,, Northwestern University
- Department of Medicine, The First Affiliated Hospital, Ningbo University
- China Health Institute, University of Nottingham Ningbo China
- Issue: Vol 31, No 6 (2024)
- Pages: 697-725
- Section: Anti-Infectives and Infectious Diseases
- URL: https://jdigitaldiagnostics.com/0929-8673/article/view/645174
- DOI: https://doi.org/10.2174/0929867330666230621112215
- ID: 645174
Cite item
Full Text
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD) worldwide. With the overpowering trend of aging, the prevalence of DKD in the elderly is progressively increasing. Genetic factors, abnormal glucose metabolism, inflammation, mitochondrial dysregulation, and oxidative stress all contribute to the development of DKD. Conceivably, during aging, these pathobiological processes are likely to be intensified, and this would further exacerbate the deterioration of renal functions in elderly patients, ultimately leading to ESRD. Currently, the pathogenesis of DKD in the elderly is not very well-understood. This study describes an appraisal of the relationship between diabetic nephropathy and aging while discussing the structural and functional changes in the aged kidney, the impact of related mechanisms on the outcome of DKD, and the latest advances in targeted therapies.
Keywords
About the authors
Yi Chen
School of Medicine, Ningbo University
Email: info@benthamscience.net
Yashpal Kanwar
Department of Pathology, Feinberg School of Medicine,, Northwestern University
Email: info@benthamscience.net
Xueqin Chen
Department of Medicine, The First Affiliated Hospital, Ningbo University
Email: info@benthamscience.net
Ming Zhan
China Health Institute, University of Nottingham Ningbo China
Author for correspondence.
Email: info@benthamscience.net
References
- Heald, A.H.; Stedman, M.; Davies, M.; Livingston, M.; Alshames, R.; Lunt, M.; Rayman, G.; Gadsby, R. Estimating life years lost to diabetes: Outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab., 2020, 9(4), 183-185. doi: 10.1097/XCE.0000000000000210 PMID: 33225235
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281. doi: 10.1016/j.diabres.2018.02.023 PMID: 29496507
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119. doi: 10.1016/j.diabres.2021.109119 PMID: 34879977
- Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; Colagiuri, S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract, 2020, 162, 108072. doi: 10.1016/j.diabres.2020.108072 PMID: 32061820
- Bridges, C.C.; Zalups, R.K. The aging kidney and the nephrotoxic effects of mercury. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(2), 55-80. doi: 10.1080/10937404.2016.1243501 PMID: 28339347
- Barutta, F.; Bellini, S.; Corbetta, B.; Durazzo, M.; Gruden, G. The future of diabetic kidney disease management: What to expect from the experimental studies? J. Nephrol., 2020, 33(6), 1151-1161. doi: 10.1007/s40620-020-00724-1 PMID: 32221858
- Deng, Y.; Li, N.; Wu, Y.; Wang, M.; Yang, S.; Zheng, Y.; Deng, X.; Xiang, D.; Zhu, Y.; Xu, P.; Zhai, Z.; Zhang, D.; Dai, Z.; Gao, J. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front. Endocrinol. (Lausanne), 2021, 12, 672350. doi: 10.3389/fendo.2021.672350 PMID: 34276558
- Burrows, N.R.; Li, Y.; Geiss, L.S. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care, 2010, 33(1), 73-77. doi: 10.2337/dc09-0343 PMID: 20040673
- Guo, J.; Zheng, H.J.; Zhang, W.; Lou, W.; Xia, C.; Han, X.T.; Huang, W.J.; Zhang, F.; Wang, Y.; Liu, W.J. Accelerated kidney aging in diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020, 1-24. doi: 10.1155/2020/1234059 PMID: 32774664
- Denic, A.; Glassock, R.J.; Rule, A.D. Structural and functional changes with the aging kidney. Adv. Chronic Kidney Dis., 2016, 23(1), 19-28. doi: 10.1053/j.ackd.2015.08.004 PMID: 26709059
- Roseman, D.A.; Hwang, S.J.; Oyama-Manabe, N.; Chuang, M.L.; ODonnell, C.J.; Manning, W.J.; Fox, C.S. Clinical associations of total kidney volume: the Framingham Heart Study. Nephrol. Dial. Transplant., 2017, 32(8), 1344-1350. PMID: 27325252
- Tauchi, H.; Tsuboi, K.; Okutomi, J. Age changes in the human kidney of the different races. Gerontology, 1971, 17(2), 87-97. doi: 10.1159/000211811 PMID: 5093734
- Wang, X.; Vrtiska, T.J.; Avula, R.T.; Walters, L.R.; Chakkera, H.A.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int., 2014, 85(3), 677-685. doi: 10.1038/ki.2013.359 PMID: 24067437
- Rule, A.D.; Sasiwimonphan, K.; Lieske, J.C.; Keddis, M.T.; Torres, V.E.; Vrtiska, T.J. Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am. J. Kidney Dis., 2012, 59(5), 611-618. doi: 10.1053/j.ajkd.2011.12.022 PMID: 22398108
- Lorenz, E.C.; Vrtiska, T.J.; Lieske, J.C.; Dillon, J.J.; Stegall, M.D.; Li, X.; Bergstralh, E.J.; Rule, A.D. Prevalence of renal artery and kidney abnormalities by computed tomography among healthy adults. Clin. J. Am. Soc. Nephrol., 2010, 5(3), 431-438. doi: 10.2215/CJN.07641009 PMID: 20089492
- Denic, A.; Alexander, M.P.; Kaushik, V.; Lerman, L.O.; Lieske, J.C.; Stegall, M.D.; Larson, J.J.; Kremers, W.K.; Vrtiska, T.J.; Chakkera, H.A.; Poggio, E.D.; Rule, A.D. Detection and clinical patterns of nephron hypertrophy and nephrosclerosis among apparently healthy adults. Am. J. Kidney Dis., 2016, 68(1), 58-67. doi: 10.1053/j.ajkd.2015.12.029 PMID: 26857648
- Rule, A.D.; Amer, H.; Cornell, L.D.; Taler, S.J.; Cosio, F.G.; Kremers, W.K.; Textor, S.C.; Stegall, M.D. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med., 2010, 152(9), 561-567. doi: 10.7326/0003-4819-152-9-201005040-00006 PMID: 20439574
- Takazakura, E.; Sawabu, N.; Handa, A.; Takada, A.; Shinoda, A.; Takeuchi, J. Intrarenal vascular changes with age and disease. Kidney Int., 1972, 2(4), 224-230. doi: 10.1038/ki.1972.98 PMID: 4657923
- Hoang, K.; Tan, J.C.; Derby, G.; Blouch, K.L.; Masek, M.; Ma, I.; Lemley, K.V.; Myers, B.D. Determinants of glomerular hypofiltration in aging humans. Kidney Int., 2003, 64(4), 1417-1424. doi: 10.1046/j.1523-1755.2003.00207.x PMID: 12969161
- Fioretto, P.; Steffes, M.W.; Brown, D.M.; Mauer, S.M. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am. J. Kidney Dis., 1992, 20(6), 549-558. doi: 10.1016/S0272-6386(12)70217-2 PMID: 1462981
- Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; Joh, K.; Noël, L.H.; Radhakrishnan, J.; Seshan, S.V.; Bajema, I.M.; Bruijn, J.A. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol., 2010, 21(4), 556-563. doi: 10.1681/ASN.2010010010 PMID: 20167701
- Friedman, E.A. Renal syndromes in diabetes. Endocrinol. Metab. Clin. North Am., 1996, 25(2), 293-324. doi: 10.1016/S0889-8529(05)70326-1 PMID: 8799702
- Sobamowo, H.; Prabhakar, S.S. The kidney in aging. Prog. Mol. Biol. Transl. Sci., 2017, 146, 303-340. doi: 10.1016/bs.pmbts.2016.12.018 PMID: 28253989
- Tan, J.C.; Busque, S.; Workeneh, B.; Ho, B.; Derby, G.; Blouch, K.L.; Graham Sommer, F.; Edwards, B.; Myers, B.D. Effects of aging on glomerular function and number in living kidney donors. Kidney Int., 2010, 78(7), 686-692. doi: 10.1038/ki.2010.128 PMID: 20463656
- Denic, A.; Lieske, J.C.; Chakkera, H.A.; Poggio, E.D.; Alexander, M.P.; Singh, P.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol., 2017, 28(1), 313-320. doi: 10.1681/ASN.2016020154 PMID: 27401688
- Zhou, X.J.; Rakheja, D.; Yu, X.; Saxena, R.; Vaziri, N.D.; Silva, F.G. The aging kidney. Kidney Int., 2008, 74(6), 710-720. doi: 10.1038/ki.2008.319 PMID: 18614996
- Coresh, J.; Astor, B.C.; Greene, T.; Eknoyan, G.; Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third national health and nutrition examination survey. Am. J. Kidney Dis., 2003, 41(1), 1-12. doi: 10.1053/ajkd.2003.50007 PMID: 12500213
- Wiggins, J.E.; Goyal, M.; Sanden, S.K.; Wharram, B.L.; Shedden, K.A.; Misek, D.E.; Kuick, R.D.; Wiggins, R.C. Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol., 2005, 16(10), 2953-2966. doi: 10.1681/ASN.2005050488 PMID: 16120818
- Esposito, C.; Dal Canton, A. Functional changes in the aging kidney. J. Nephrol., 2010, 23(Suppl. 15), S41-S45. PMID: 20872370
- Huber, T.B.; Edelstein, C.L.; Hartleben, B.; Inoki, K.; Jiang, M.; Koya, D.; Kume, S.; Lieberthal, W.; Pallet, N.; Quiroga, A.; Ravichandran, K.; Susztak, K.; Yoshida, S.; Dong, Z. Emerging role of autophagy in kidney function, diseases and aging. Autophagy, 2012, 8(7), 1009-1031. doi: 10.4161/auto.19821 PMID: 22692002
- Wiggins, J.E. Aging in the glomerulus. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(12), 1358-1364. doi: 10.1093/gerona/gls157 PMID: 22843670
- Martin, J.E.; Sheaff, M.T. Renal ageing. J. Pathol., 2007, 211(2), 198-205. doi: 10.1002/path.2111 PMID: 17200944
- Abdelhafiz, A.H. Diabetic kidney disease in older people with type 2 diabetes mellitus: Improving prevention and treatment options. Drugs Aging, 2020, 37(8), 567-584. doi: 10.1007/s40266-020-00773-y PMID: 32495289
- Plante, G.E. Impact of aging on the bodys vascular system. Metabolism, 2003, 52(10)(Suppl. 2), 31-35. doi: 10.1016/S0026-0495(03)00299-3 PMID: 14577061
- Murata, K.; Horiuchi, Y. Age-dependent distribution of acidic glycosaminoglycans in human kidney tissue. Nephron J., 1978, 20(2), 111-118. doi: 10.1159/000181203 PMID: 622208
- Merker, L. Nephropathy in diabetes. MMW Fortschr. Med., 2021, 163(8), 48-51. doi: 10.1007/s15006-021-9782-1 PMID: 33904093
- Campbell, R.C.; Ruggenenti, P.; Remuzzi, G. Proteinuria in diabetic nephropathy: Treatment and evolution. Curr. Diab. Rep., 2003, 3(6), 497-504. doi: 10.1007/s11892-003-0014-0 PMID: 14611747
- Baldea, A.J. Effect of aging on renal function plus monitoring and support. Surg. Clin. North Am., 2015, 95(1), 71-83. doi: 10.1016/j.suc.2014.09.003 PMID: 25459543
- A/L B Vasanth Rao, VR; Tan, S.H.; Candasamy, M.; Bhattamisra, S.K. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab. Syndr., 2019, 13(1), 754-762. doi: 10.1016/j.dsx.2018.11.054 PMID: 30641802
- Najafian, B.; Fogo, A.B.; Lusco, M.A.; Alpers, C.E. AJKD atlas of renal pathology: Diabetic nephropathy. Am. J. Kidney dis., 2015, 66(5), e37-e38. doi: 10.1053/j.ajkd.2015.08.010 PMID: 26498421
- Najafian, B.; Alpers, C.E.; Fogo, A.B. Pathology of human diabetic nephropathy. Contrib. Nephrol., 2011, 170, 36-47. doi: 10.1159/000324942 PMID: 21659756
- Hong, D.; Zheng, T.; Jia-qing, S.; Jian, W.; Zhi-hong, L.; Lei-shi, L. Nodular glomerular lesion: A later stage of diabetic nephropathy? Diabetes Res. Clin. Pract., 2007, 78(2), 189-195. doi: 10.1016/j.diabres.2007.03.024 PMID: 17683824
- An, X.; Zhang, L.; Yuan, Y.; Wang, B.; Yao, Q.; Li, L.; Zhang, J.; He, M.; Zhang, J. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Sci. Rep., 2017, 7(1), 6413. doi: 10.1038/s41598-017-06844-2 PMID: 28743882
- Maezawa, Y.; Takemoto, M.; Yokote, K. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J. Diabetes Investig., 2015, 6(1), 3-15. doi: 10.1111/jdi.12255 PMID: 25621126
- Bakris, G.L.; Fonseca, V.A.; Sharma, K.; Wright, E.M. Renal sodiumglucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int., 2009, 75(12), 1272-1277. doi: 10.1038/ki.2009.87 PMID: 19357717
- Gronda, E.; Jessup, M.; Iacoviello, M.; Palazzuoli, A.; Napoli, C. Glucose metabolism in the kidney: Neurohormonal activation and heart failure development. J. Am. Heart Assoc., 2020, 9(23), e018889. doi: 10.1161/JAHA.120.018889 PMID: 33190567
- Gilbert, R.E.; Cooper, M.E. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int., 1999, 56(5), 1627-1637. doi: 10.1046/j.1523-1755.1999.00721.x PMID: 10571771
- Russo, G.T.; De Cosmo, S.; Viazzi, F.; Mirijello, A.; Ceriello, A.; Guida, P.; Giorda, C.; Cucinotta, D.; Pontremoli, R.; Fioretto, P. Diabetic kidney disease in the elderly: prevalence and clinical correlates. BMC Geriatr., 2018, 18(1), 38. doi: 10.1186/s12877-018-0732-4 PMID: 29394888
- Kanwar, Y.S.; Sun, L.; Xie, P.; Liu, F.; Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol., 2011, 6(1), 395-423. doi: 10.1146/annurev.pathol.4.110807.092150 PMID: 21261520
- Xiong, Y.; Zhou, L. The signaling of cellular senescence in diabetic nephropathy. Oxid. Med. Cell. Longev., 2019, 2019, 1-16. doi: 10.1155/2019/7495629 PMID: 31687085
- Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol., 2019, 15(6), 327-345. doi: 10.1038/s41581-019-0135-6 PMID: 30894700
- Reddy, M.A.; Zhang, E.; Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 2015, 58(3), 443-455. doi: 10.1007/s00125-014-3462-y PMID: 25481708
- Siddiqi, F.S.; Majumder, S.; Thai, K.; Abdalla, M.; Hu, P.; Advani, S.L.; White, K.E.; Bowskill, B.B.; Guarna, G.; dos Santos, C.C.; Connelly, K.A.; Advani, A. The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes. J. Am. Soc. Nephrol., 2016, 27(7), 2021-2034. doi: 10.1681/ASN.2014090898 PMID: 26534922
- Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int. J. Endocrinol., 2018, 2018, 1-13. doi: 10.1155/2018/1875870 PMID: 29808088
- Zhan, M.; Kanwar, Y.S. An enigma: does a high-protein diet accelerate renal damage in humans? Lessons from diabetic animal models. Am. J. Physiol. Renal Physiol., 2020, 318(4), F979-F981. doi: 10.1152/ajprenal.00076.2020 PMID: 32174145
- Koya, D.; Jirousek, M.R.; Lin, Y.W.; Ishii, H.; Kuboki, K.; King, G.L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest., 1997, 100(1), 115-126. doi: 10.1172/JCI119503 PMID: 9202063
- Schena, F.P.; Gesualdo, L. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol., 2005, 16(3_suppl_1)(Suppl. 1), S30-S33. doi: 10.1681/ASN.2004110970 PMID: 15938030
- Grabias, B.M.; Konstantopoulos, K. The physical basis of renal fibrosis: Effects of altered hydrodynamic forces on kidney homeostasis. Am. J. Physiol. Renal Physiol., 2014, 306(5), F473-F485. doi: 10.1152/ajprenal.00503.2013 PMID: 24352503
- Coward, R.J.M.; Welsh, G.I.; Yang, J.; Tasman, C.; Lennon, R.; Koziell, A.; Satchell, S.; Holman, G.D.; Kerjaschki, D.; Tavaré, J.M.; Mathieson, P.W.; Saleem, M.A. The human glomerular podocyte is a novel target for insulin action. Diabetes, 2005, 54(11), 3095-3102. doi: 10.2337/diabetes.54.11.3095 PMID: 16249431
- Rogacka, D.; Piwkowska, A.; Audzeyenka, I.; Angielski, S.; Jankowski, M. Involvement of the AMPKPTEN pathway in insulin resistance induced by high glucose in cultured rat podocytes. Int. J. Biochem. Cell Biol., 2014, 51, 120-130. doi: 10.1016/j.biocel.2014.04.008 PMID: 24747132
- Piwkowska, A.; Rogacka, D.; Jankowski, M.; Dominiczak, M.H.; Stępiński, J.K.; Angielski, S. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem. Biophys. Res. Commun., 2010, 393(2), 268-273. doi: 10.1016/j.bbrc.2010.01.119 PMID: 20123087
- Rogacka, D.; Piwkowska, A.; Jankowski, M.; Kocbuch, K.; Dominiczak, M.H.; Stępiński, J.K.; Angielski, S. Expression of GFAT1 and OGT in podocytes: Transport of glucosamine and the implications for glucose uptake into these cells. J. Cell. Physiol., 2010, 225(2), 577-584. doi: 10.1002/jcp.22242 PMID: 20506529
- Rogacka, D.; Piwkowska, A.; Audzeyenka, I.; Angielski, S.; Jankowski, M. SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Exp. Cell Res., 2016, 349(2), 328-338. doi: 10.1016/j.yexcr.2016.11.005 PMID: 27836811
- Welsh, G.I.; Hale, L.J.; Eremina, V.; Jeansson, M.; Maezawa, Y.; Lennon, R.; Pons, D.A.; Owen, R.J.; Satchell, S.C.; Miles, M.J.; Caunt, C.J.; McArdle, C.A.; Pavenstädt, H.; Tavaré, J.M.; Herzenberg, A.M.; Kahn, C.R.; Mathieson, P.W.; Quaggin, S.E.; Saleem, M.A.; Coward, R.J.M. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab., 2010, 12(4), 329-340. doi: 10.1016/j.cmet.2010.08.015 PMID: 20889126
- Jiang, W.; Xiao, T.; Han, W.; Xiong, J.; He, T.; Liu, Y.; Huang, Y.; Yang, K.; Bi, X.; Xu, X.; Yu, Y.; Li, Y.; Gu, J.; Zhang, J.; Huang, Y.; Zhang, B.; Zhao, J. Klotho inhibits PKCα/p66SHC-mediated podocyte injury in diabetic nephropathy. Mol. Cell. Endocrinol., 2019, 494, 110490. doi: 10.1016/j.mce.2019.110490 PMID: 31207271
- Liu, L.; Yang, L.; Chang, B.; Zhang, J.; Guo, Y.; Yang, X. The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3II signaling pathway. Ren. Fail., 2018, 40(1), 492-497. doi: 10.1080/0886022X.2018.1489287 PMID: 30200803
- Kimura, T.; Isaka, Y.; Yoshimori, T. Autophagy and kidney inflammation. Autophagy, 2017, 13(6), 997-1003. doi: 10.1080/15548627.2017.1309485 PMID: 28441075
- Allen, D.A.; Harwood, S.M.; Varagunam, M.; Raftery, M.J.; Yaqoob, M.M. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J., 2003, 17(8), 1-21. doi: 10.1096/fj.02-0130fje PMID: 12670885
- Igarashi, M.; Wakasaki, H.; Takahara, N.; Ishii, H.; Jiang, Z.Y.; Yamauchi, T.; Kuboki, K.; Meier, M.; Rhodes, C.J.; King, G.L. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J. Clin. Invest., 1999, 103(2), 185-195. doi: 10.1172/JCI3326 PMID: 9916130
- Adhikary, L.; Chow, F.; Nikolic-Paterson, D.J.; Stambe, C.; Dowling, J.; Atkins, R.C.; Tesch, G.H. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia, 2004, 47(7), 1210-1222. doi: 10.1007/s00125-004-1437-0 PMID: 15232685
- Meldrum, K.K.; Meldrum, D.R.; Hile, K.L.; Yerkes, E.B.; Ayala, A.; Cain, M.P.; Rink, R.C.; Casale, A.J.; Kaefer, M.A. p38 MAPK mediates renal tubular cell TNF-α production and TNF-α-dependent apoptosis during simulated ischemia. Am. J. Physiol. Cell Physiol., 2001, 281(2), C563-C570. doi: 10.1152/ajpcell.2001.281.2.C563 PMID: 11443055
- Zhou, L.; Xu, D.; Sha, W.; Shen, L.; Lu, G.; Yin, X.; Wang, M. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J. Transl. Med., 2015, 13(1), 352. doi: 10.1186/s12967-015-0710-y PMID: 26552447
- Garagliano, J.M.; Katsurada, A.; Miyata, K.; Derbenev, A.V.; Zsombok, A.; Navar, L.G.; Satou, R. Advanced glycation end products stimulate angiotensinogen production in renal proximal tubular cells. Am. J. Med. Sci., 2019, 357(1), 57-66. doi: 10.1016/j.amjms.2018.10.008 PMID: 30466736
- Forbes, J.M.; Thallas, V.; Thomas, M.C.; Founds, H.W.; Burns, W.C.; Jerums, G.; Cooper, M.E. The breakdown of pre-existing advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J., 2003, 17(12), 1762-1764. doi: 10.1096/fj.02-1102fje PMID: 12958202
- Curran, C.S.; Kopp, J.B. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front. Med. (Lausanne), 2022, 9, 970423. doi: 10.3389/fmed.2022.970423 PMID: 36017003
- Suryavanshi, S.V.; Kulkarni, Y.A. NF-κβ: A potential target in the management of vascular complications of diabetes. Front. Pharmacol., 2017, 8, 798. doi: 10.3389/fphar.2017.00798 PMID: 29163178
- Zatz, R.; Dunn, B.R.; Meyer, T.W.; Anderson, S.; Rennke, H.G.; Brenner, B.M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest., 1986, 77(6), 1925-1930. doi: 10.1172/JCI112521 PMID: 3011862
- Hostetter, T.H.; Troy, J.L.; Brenner, B.M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int., 1981, 19(3), 410-415. doi: 10.1038/ki.1981.33 PMID: 7241881
- Singh, R.; Singh, A.K.; Alavi, N.; Leehey, D.J. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J. Am. Soc. Nephrol., 2003, 14(4), 873-880. doi: 10.1097/01.ASN.0000060804.40201.6E PMID: 12660321
- Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens., 2007, 21(1), 20-27. doi: 10.1038/sj.jhh.1002101 PMID: 17096009
- Vidotti, D.B.; Casarini, D.E.; Cristovam, P.C.; Leite, C.A.; Schor, N.; Boim, M.A. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am. J. Physiol. Renal Physiol., 2004, 286(6), F1039-F1045. doi: 10.1152/ajprenal.00371.2003 PMID: 14722017
- Satirapoj, B. Nephropathy in diabetes. Adv. Exp. Med. Biol., 2013, 771, 107-122. doi: 10.1007/978-1-4614-5441-0_11 PMID: 23393675
- He, W.; Miao, F.J.P.; Lin, D.C.H.; Schwandner, R.T.; Wang, Z.; Gao, J.; Chen, J.L.; Tian, H.; Ling, L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature, 2004, 429(6988), 188-193. doi: 10.1038/nature02488 PMID: 15141213
- Vallon, V.; Komers, R. Pathophysiology of the diabetic kidney. Compr. Physiol., 2011, 1(3), 1175-1232. doi: 10.1002/cphy.c100049 PMID: 23733640
- Vallon, V.; Blantz, R.C.; Thomson, S. Glomerular hyperfiltration and the salt paradox in early corrected type 1 diabetes mellitus: a tubulo-centric view. J. Am. Soc. Nephrol., 2003, 14(2), 530-537. doi: 10.1097/01.ASN.0000051700.07403.27 PMID: 12538755
- Abbate, M.; Remuzzi, G. Proteinuria as a mediator of tubulointerstitial injury. Kidney Blood Press. Res., 1999, 22(1-2), 37-46. doi: 10.1159/000025907 PMID: 10352406
- Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6), 1446-1454. doi: 10.2337/db08-0057 PMID: 18511445
- Susztak, K.; Raff, A.C.; Schiffer, M.; Böttinger, E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 2006, 55(1), 225-233. doi: 10.2337/diabetes.55.01.06.db05-0894 PMID: 16380497
- Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269. doi: 10.2174/092986710793348581 PMID: 20939814
- Kumar, S.; Kim, Y.R.; Vikram, A.; Naqvi, A.; Li, Q.; Kassan, M.; Kumar, V.; Bachschmid, M.M.; Jacobs, J.S.; Kumar, A.; Irani, K. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1714-1719. doi: 10.1073/pnas.1614112114 PMID: 28137876
- Lee, E.A.; Seo, J.Y.; Jiang, Z.; Yu, M.R.; Kwon, M.K.; Ha, H.; Lee, H.B. Reactive oxygen species mediate high glucoseinduced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int., 2005, 67(5), 1762-1771. doi: 10.1111/j.1523-1755.2005.00274.x PMID: 15840023
- Zhan, M.; Brooks, C.; Liu, F.; Sun, L.; Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int., 2013, 83(4), 568-581. doi: 10.1038/ki.2012.441 PMID: 23325082
- Zhan, M.; Usman, I.; Yu, J.; Ruan, L.; Bian, X.; Yang, J.; Yang, S.; Sun, L.; Kanwar, Y.S. Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy. Clin. Sci. (Lond.), 2018, 132(12), 1297-1314. doi: 10.1042/CS20180005 PMID: 29760122
- Zhan, M.; Usman, I.M.; Sun, L.; Kanwar, Y.S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J. Am. Soc. Nephrol., 2015, 26(6), 1304-1321. doi: 10.1681/ASN.2014050457 PMID: 25270067
- Goldfine, A.B.; Shoelson, S.E. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J. Clin. Invest., 2017, 127(1), 83-93. doi: 10.1172/JCI88884 PMID: 28045401
- Zhang, H.; Nair, V.; Saha, J.; Atkins, K.B.; Hodgin, J.B.; Saunders, T.L.; Myers, M.G., Jr; Werner, T.; Kretzler, M.; Brosius, F.C. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int., 2017, 92(4), 909-921. doi: 10.1016/j.kint.2017.03.027 PMID: 28554737
- Toth-Manikowski, S.; Atta, M.G. Diabetic kidney disease: Pathophysiology and therapeutic targets. J. Diabetes Res., 2015, 2015, 1-16. doi: 10.1155/2015/697010 PMID: 26064987
- García-García, P.M.; Getino-Melián, M.A.; Domínguez-Pimentel, V.; Navarro-González, J.F. Inflammation in diabetic kidney disease. World J. Diabetes, 2014, 5(4), 431-443. doi: 10.4239/wjd.v5.i4.431 PMID: 25126391
- Donate-Correa, J.; Martín-Núñez, E.; Muros-de-Fuentes, M.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory cytokines in diabetic nephropathy. J. Diabetes Res., 2015, 2015, 1-9. doi: 10.1155/2015/948417 PMID: 25785280
- Weigert, C.; Sauer, U.; Brodbeck, K.; Pfeiffer, A.; Häring, H.U.; Schleicher, E.D. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. J. Am. Soc. Nephrol., 2000, 11(11), 2007-2016. doi: 10.1681/ASN.V11112007 PMID: 11053476
- Gruden, G.; Zonca, S.; Hayward, A.; Thomas, S.; Maestrini, S.; Gnudi, L.; Viberti, G.C. Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes, 2000, 49(4), 655-661. doi: 10.2337/diabetes.49.4.655 PMID: 10871205
- Wada, J.; Makino, H. Innate immunity in diabetes and diabetic nephropathy. Nat. Rev. Nephrol., 2016, 12(1), 13-26. doi: 10.1038/nrneph.2015.175 PMID: 26568190
- Tang, S.C.W.; Yiu, W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol., 2020, 16(4), 206-222. doi: 10.1038/s41581-019-0234-4 PMID: 31942046
- Hong, J.N.; Li, W.W.; Wang, L.L.; Guo, H.; Jiang, Y.; Gao, Y.J.; Tu, P.F.; Wang, X.M. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice. Chin. Med., 2017, 12(1), 13. doi: 10.1186/s13020-017-0134-0 PMID: 28529539
- Fu, J.; Akat, K.M.; Sun, Z.; Zhang, W.; Schlondorff, D.; Liu, Z.; Tuschl, T.; Lee, K.; He, J.C. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J. Am. Soc. Nephrol., 2019, 30(4), 533-545. doi: 10.1681/ASN.2018090896 PMID: 30846559
- Wang, X.; Yao, B.; Wang, Y.; Fan, X.; Wang, S.; Niu, A.; Yang, H.; Fogo, A.; Zhang, M.Z.; Harris, R.C. Macrophage cyclooxygenase-2 protects against development of diabetic nephropathy. Diabetes, 2017, 66(2), 494-504. doi: 10.2337/db16-0773 PMID: 27815317
- Sun, H.; Tian, J.; Xian, W.; Xie, T.; Yang, X. Pentraxin-3 attenuates renal damage in diabetic nephropathy by promoting M2 macrophage differentiation. Inflammation, 2015, 38(5), 1739-1747. doi: 10.1007/s10753-015-0151-z PMID: 25761429
- Tang, P.M.K.; Zhang, Y.; Xiao, J.; Tang, P.C.T.; Chung, J.Y.F.; Li, J.; Xue, V.W.; Huang, X.R.; Chong, C.C.N.; Ng, C.F.; Lee, T.L.; To, K.F.; Nikolic-Paterson, D.J.; Lan, H.Y. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophagemyofibroblast transition. Proc. Natl. Acad. Sci. USA, 2020, 117(34), 20741-20752. doi: 10.1073/pnas.1917663117 PMID: 32788346
- Tang, P.M.K.; Nikolic-Paterson, D.J.; Lan, H.Y. Macrophages: Versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol., 2019, 15(3), 144-158. doi: 10.1038/s41581-019-0110-2 PMID: 30692665
- Awad, A.S.; You, H.; Gao, T.; Cooper, T.K.; Nedospasov, S.A.; Vacher, J.; Wilkinson, P.F.; Farrell, F.X.; Brian Reeves, W. Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney Int., 2015, 88(4), 722-733. doi: 10.1038/ki.2015.162 PMID: 26061548
- Moriwaki, Y.; Inokuchi, T.; Yamamoto, A.; Ka, T.; Tsutsumi, Z.; Takahashi, S.; Yamamoto, T. Effect of TNF-α inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol., 2007, 44(4), 215-218. doi: 10.1007/s00592-007-0007-6 PMID: 17767370
- Pavkov, M.E.; Weil, E.J.; Fufaa, G.D.; Nelson, R.G.; Lemley, K.V.; Knowler, W.C.; Niewczas, M.A.; Krolewski, A.S. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int., 2016, 89(1), 226-234. doi: 10.1038/ki.2015.278 PMID: 26398493
- Huang, K.; Huang, J.; Xie, X.; Wang, S.; Chen, C.; Shen, X.; Liu, P.; Huang, H. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic. Biol. Med., 2013, 65, 528-540. doi: 10.1016/j.freeradbiomed.2013.07.029 PMID: 23891678
- Chen, Y.; Liang, Y.; Hu, T.; Wei, R.; Cai, C.; Wang, P.; Wang, L.; Qiao, W.; Feng, L. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt. Exp. Ther. Med., 2017, 14(5), 4181-4193. doi: 10.3892/etm.2017.5098 PMID: 29104634
- Shao, Y.; Lv, C.; Wu, C.; Zhou, Y.; Wang, Q. Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1α signaling pathway. Diabetes Metab. Res. Rev., 2016, 32(6), 534-543. doi: 10.1002/dmrr.2788 PMID: 26891083
- Wada, J.; Makino, H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 139-152. doi: 10.1042/CS20120198 PMID: 23075333
- Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442. doi: 10.1681/ASN.2007091048 PMID: 18256353
- Alicic, R.Z.; Johnson, E.J.; Tuttle, K.R. Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv. Chronic Kidney Dis., 2018, 25(2), 181-191. doi: 10.1053/j.ackd.2017.12.002 PMID: 29580582
- Wada, T.; Furuichi, K.; Sakai, N.; Iwata, Y.; Yoshimoto, K.; Shimizu, M.; Takeda, S.I.; Takasawa, K.; Yoshimura, M.; Kida, H.; Kobayashi, K.I.; Mukaida, N.; Naito, T.; Matsushima, K.; Yokoyama, H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int., 2000, 58(4), 1492-1499. doi: 10.1046/j.1523-1755.2000.00311.x PMID: 11012884
- Guzik, T.J.; Harrison, D.G. Endothelial NF-kappaB as a mediator of kidney damage: the missing link between systemic vascular and renal disease? Circ. Res., 2007, 101(3), 227-229. doi: 10.1161/CIRCRESAHA.107.158295 PMID: 17673681
- Tang, P.M.K.; Zhang, Y.Y.; Hung, J.S.C.; Chung, J.Y.F.; Huang, X.R.; To, K.F.; Lan, H.Y. DPP4/CD32b/NF-κB circuit: A novel druggable target for inhibiting crp-driven diabetic nephropathy. Mol. Ther., 2021, 29(1), 365-375. doi: 10.1016/j.ymthe.2020.08.017 PMID: 32956626
- Wang, W.J.; Cai, G.Y.; Chen, X.M. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease. Oncotarget, 2017, 8(38), 64520-64533. doi: 10.18632/oncotarget.17327 PMID: 28969091
- Prattichizzo, F.; De Nigris, V.; Mancuso, E.; Spiga, R.; Giuliani, A.; Matacchione, G.; Lazzarini, R.; Marcheselli, F.; Recchioni, R.; Testa, R.; La Sala, L.; Rippo, M.R.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol., 2018, 15, 170-181. doi: 10.1016/j.redox.2017.12.001 PMID: 29253812
- Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Invest., 2013, 123(3), 966-972. doi: 10.1172/JCI64098 PMID: 23454759
- Ovadya, Y.; Krizhanovsky, V. Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 2014, 15(6), 627-642. doi: 10.1007/s10522-014-9529-9 PMID: 25217383
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217. doi: 10.1016/j.cell.2013.05.039 PMID: 23746838
- Ohashi, S.; Abe, H.; Takahashi, T.; Yamamoto, Y.; Takeuchi, M.; Arai, H.; Nagata, K.; Kita, T.; Okamoto, H.; Yamamoto, H.; Doi, T. Advanced glycation end products increase collagen-specific chaperone protein in mouse diabetic nephropathy. J. Biol. Chem., 2004, 279(19), 19816-19823. doi: 10.1074/jbc.M310428200 PMID: 15004023
- Yamagishi, S.; Nakamura, N.; Suematsu, M.; Kaseda, K.; Matsui, T. Advanced glycation end products: A molecular target for vascular complications in diabetes. Mol Med, 2015(1), S32-S40. doi: 10.2119/molmed.2015.00067 PMID: 26605646
- Paneni, F.; Costantino, S.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Scavone, G.; Villano, A.; Pitocco, D.; Lanza, G.; Volpe, M.; Lüscher, T.F.; Cosentino, F. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ. Cardiovasc. Genet., 2015, 8(1), 150-158. doi: 10.1161/CIRCGENETICS.114.000671 PMID: 25472959
- Chung, H.Y.; Sung, B.; Jung, K.J.; Zou, Y.; Yu, B.P. The molecular inflammatory process in aging. Antioxid. Redox Signal., 2006, 8(3-4), 572-581. doi: 10.1089/ars.2006.8.572 PMID: 16677101
- Stenvinkel, P.; Larsson, T.E. Chronic kidney disease: A clinical model of premature aging. Am. J. Kidney Dis., 2013, 62(2), 339-351. doi: 10.1053/j.ajkd.2012.11.051 PMID: 23357108
- Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3), 344-362. doi: 10.1016/j.cell.2008.01.020 PMID: 18267068
- Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23(12), 2369-2380. doi: 10.1038/sj.emboj.7600244 PMID: 15152190
- Satoh, A.; Brace, C.S.; Rensing, N.; Cliften, P.; Wozniak, D.F.; Herzog, E.D.; Yamada, K.A.; Imai, S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab., 2013, 18(3), 416-430. doi: 10.1016/j.cmet.2013.07.013 PMID: 24011076
- Zhao, Y.; Banerjee, S.; Dey, N.; LeJeune, W.S.; Sarkar, P.S.; Brobey, R.; Rosenblatt, K.P.; Tilton, R.G.; Choudhary, S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes, 2011, 60(7), 1907-1916. doi: 10.2337/db10-1262 PMID: 21593200
- OSullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal aging: Causes and consequences. J. Am. Soc. Nephrol., 2017, 28(2), 407-420. doi: 10.1681/ASN.2015121308 PMID: 28143966
- Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075. doi: 10.1038/nature06639 PMID: 18305538
- Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293. doi: 10.1016/j.molcel.2010.09.023 PMID: 20965422
- Ding, Y.; Kim, S.; Lee, S.Y.; Koo, J.K.; Wang, Z.; Choi, M.E. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol., 2014, 25(12), 2835-2846. doi: 10.1681/ASN.2013101068 PMID: 24854279
- Condon, K.J.; Sabatini, D.M. Nutrient regulation of mTORC1 at a glance. J. Cell Sci., 2019, 132(21), jcs222570. doi: 10.1242/jcs.222570 PMID: 31722960
- Li, Y.; Chen, Y. AMPK and autophagy. Adv. Exp. Med. Biol., 2019, 1206, 85-108. doi: 10.1007/978-981-15-0602-4_4 PMID: 31776981
- Fang, L.; Zhou, Y.; Cao, H.; Wen, P.; Jiang, L.; He, W.; Dai, C.; Yang, J. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One, 2013, 8(4), e60546. doi: 10.1371/journal.pone.0060546 PMID: 23593240
- Catrina, S.B.; Zheng, X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia, 2021, 64(4), 709-716. doi: 10.1007/s00125-021-05380-z PMID: 33496820
- Yeo, E.J. Hypoxia and aging. Exp. Mol. Med., 2019, 51(6), 1-15. PMID: 31221957
- Yamamoto, T.; Takabatake, Y.; Kimura, T.; Takahashi, A.; Namba, T.; Matsuda, J.; Minami, S.; Kaimori, J.; Matsui, I.; Kitamura, H.; Matsusaka, T.; Niimura, F.; Yanagita, M.; Isaka, Y.; Rakugi, H. Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy, 2016, 12(5), 801-813. doi: 10.1080/15548627.2016.1159376 PMID: 26986194
- Jiang, N.; Zhao, H.; Han, Y.; Li, L.; Xiong, S.; Zeng, L.; Xiao, Y.; Wei, L.; Xiong, X.; Gao, P.; Yang, M.; Liu, Y.; Sun, L. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1mediated control of mitochondrial dynamics. Cell Prolif., 2020, 53(11), e12909. doi: 10.1111/cpr.12909 PMID: 32975326
- Bellot, G.; Garcia-Medina, R.; Gounon, P.; Chiche, J.; Roux, D.; Pouysségur, J.; Mazure, N.M. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 2009, 29(10), 2570-2581. doi: 10.1128/MCB.00166-09 PMID: 19273585
- Kume, S.; Uzu, T.; Horiike, K.; Chin-Kanasaki, M.; Isshiki, K.; Araki, S.; Sugimoto, T.; Haneda, M.; Kashiwagi, A.; Koya, D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest., 2010, 120(4), 1043-1055. doi: 10.1172/JCI41376 PMID: 20335657
- Liu, W.J.; Huang, W.F.; Ye, L.; Chen, R.H.; Yang, C.; Wu, H.L.; Pan, Q.J.; Liu, H.F. The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3182-3189. PMID: 29863264. PMID: 29863264
- Naguib, M.; Rashed, L.A. Serum level of the autophagy biomarker Beclin-1 in patients with diabetic kidney disease. Diabetes Res. Clin. Pract., 2018, 143, 56-61. doi: 10.1016/j.diabres.2018.06.022 PMID: 29959950
- Shiels, P.G.; McGuinness, D.; Eriksson, M.; Kooman, J.P.; Stenvinkel, P. The role of epigenetics in renal ageing. Nat. Rev. Nephrol., 2017, 13(8), 471-482. doi: 10.1038/nrneph.2017.78 PMID: 28626222
- Sugita, E.; Hayashi, K.; Hishikawa, A.; Itoh, H. Epigenetic alterations in podocytes in diabetic nephropathy. Front. Pharmacol., 2021, 12, 759299. doi: 10.3389/fphar.2021.759299 PMID: 34630127
- Hayashi, K.; Sasamura, H.; Nakamura, M.; Sakamaki, Y.; Azegami, T.; Oguchi, H.; Tokuyama, H.; Wakino, S.; Hayashi, K.; Itoh, H. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int., 2015, 88(4), 745-753. doi: 10.1038/ki.2015.178 PMID: 26108068
- Wan, F.; Tang, Y.W.; Tang, X.L.; Li, Y.Y.; Yang, R.C. TET2 mediated demethylation is involved in the protective effect of triptolide on podocytes. Am. J. Transl. Res., 2021, 13(3), 1233-1244. PMID: 33841652
- Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; Kubota, E.; Tokuyama, H.; Hayashi, K.; Guarente, L.; Itoh, H. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med., 2013, 19(11), 1496-1504. doi: 10.1038/nm.3363 PMID: 24141423
- Young, G.H.; Wu, V.C. Klotho methylation is linked to uremic toxins and chronic kidney disease. Kidney Int., 2012, 81(7), 611-612. doi: 10.1038/ki.2011.461 PMID: 22419041
- Verzola, D.; Gandolfo, M.T.; Gaetani, G.; Ferraris, A.; Mangerini, R.; Ferrario, F.; Villaggio, B.; Gianiorio, F.; Tosetti, F.; Weiss, U.; Traverso, P.; Mji, M.; Deferrari, G.; Garibotto, G. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2008, 295(5), F1563-F1573. doi: 10.1152/ajprenal.90302.2008 PMID: 18768588
- Westhoff, J.H.; Schildhorn, C.; Jacobi, C.; Hömme, M.; Hartner, A.; Braun, H.; Kryzer, C.; Wang, C.; von Zglinicki, T.; Kränzlin, B.; Gretz, N.; Melk, A. Telomere shortening reduces regenerative capacity after acute kidney injury. J. Am. Soc. Nephrol., 2010, 21(2), 327-336. doi: 10.1681/ASN.2009010072 PMID: 19959722
- Cheng, H.; Fan, X.; Lawson, W.E.; Paueksakon, P.; Harris, R.C. Telomerase deficiency delays renal recovery in mice after ischemiareperfusion injury by impairing autophagy. Kidney Int., 2015, 88(1), 85-94. doi: 10.1038/ki.2015.69 PMID: 25760322
- Sharma, K.; Karl, B.; Mathew, A.V.; Gangoiti, J.A.; Wassel, C.L.; Saito, R.; Pu, M.; Sharma, S.; You, Y.H.; Wang, L.; Diamond-Stanic, M.; Lindenmeyer, M.T.; Forsblom, C.; Wu, W.; Ix, J.H.; Ideker, T.; Kopp, J.B.; Nigam, S.K.; Cohen, C.D.; Groop, P.H.; Barshop, B.A.; Natarajan, L.; Nyhan, W.L.; Naviaux, R.K. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol., 2013, 24(11), 1901-1912. doi: 10.1681/ASN.2013020126 PMID: 23949796
- Wauer, T.; Simicek, M.; Schubert, A.; Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature, 2015, 524(7565), 370-374. doi: 10.1038/nature14879 PMID: 26161729
- Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 2015, 524(7565), 309-314. doi: 10.1038/nature14893 PMID: 26266977
- Chen, K.; Dai, H.; Yuan, J.; Chen, J.; Lin, L.; Zhang, W.; Wang, L.; Zhang, J.; Li, K.; He, Y. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis., 2018, 9(2), 105. doi: 10.1038/s41419-017-0127-z PMID: 29367621
- Sun, C.Y.; Cheng, M.L.; Pan, H.C.; Lee, J.H.; Lee, C.C. Protein-bound uremic toxins impaired mitochondrial dynamics and functions. Oncotarget, 2017, 8(44), 77722-77733. doi: 10.18632/oncotarget.20773 PMID: 29100420
- Shimizu, H.; Bolati, D.; Adijiang, A.; Enomoto, A.; Nishijima, F.; Dateki, M.; Niwa, T. Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am. J. Physiol. Cell Physiol., 2010, 299(5), C1110-C1117. doi: 10.1152/ajpcell.00217.2010 PMID: 20720180
- Liochev, S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med., 2013, 60, 1-4. doi: 10.1016/j.freeradbiomed.2013.02.011 PMID: 23434764
- Böger, R.H.; Bode-Böger, S.M.; Szuba, A.; Tsao, P.S.; Chan, J.R.; Tangphao, O.; Blaschke, T.F.; Cooke, J.P. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation, 1998, 98(18), 1842-1847. doi: 10.1161/01.CIR.98.18.1842 PMID: 9799202
- Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev., 1998, 78(2), 547-581. doi: 10.1152/physrev.1998.78.2.547 PMID: 9562038
- Pérez-Gallardo, R.V.; Noriega-Cisneros, R.; Esquivel-Gutiérrez, E.; Calderón-Cortés, E.; Cortés-Rojo, C.; Manzo-Avalos, S.; Campos-García, J.; Salgado-Garciglia, R.; Montoya-Pérez, R.; Boldogh, I.; Saavedra-Molina, A. Effects of diabetes on oxidative and nitrosative stress in kidney mitochondria from aged rats. J. Bioenerg. Biomembr., 2014, 46(6), 511-518. doi: 10.1007/s10863-014-9594-4 PMID: 25425473
- Lieber, M.R.; Karanjawala, Z.E. Ageing, repetitive genomes and DNA damage. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 69-75. doi: 10.1038/nrm1281 PMID: 14708011
- Dërmaku-Sopjani, M.; Kolgeci, S.; Abazi, S.; Sopjani, M. Significance of the anti-aging protein klotho. Mol. Membr. Biol., 2013, 30(8), 369-385. doi: 10.3109/09687688.2013.837518 PMID: 24124751
- Kim, J.H.; Hwang, K.H.; Park, K.S.; Kong, I.D.; Cha, S.K. Biological role of anti-aging protein klotho. J. Lifestyle Med., 2015, 5(1), 1-6. doi: 10.15280/jlm.2015.5.1.1 PMID: 26528423
- Drew, D.A.; Katz, R.; Kritchevsky, S.; Ix, J.; Shlipak, M.; Gutiérrez, O.M.; Newman, A.; Hoofnagle, A.; Fried, L.; Semba, R.D.; Sarnak, M. Association between soluble klotho and change in kidney function: The health aging and body composition study. J. Am. Soc. Nephrol., 2017, 28(6), 1859-1866. doi: 10.1681/ASN.2016080828 PMID: 28104822
- Xu, Y.; Sun, Z. Molecular basis of klotho: From gene to function in aging. Endocr. Rev., 2015, 36(2), 174-193. doi: 10.1210/er.2013-1079 PMID: 25695404
- Ohnishi, M.; Razzaque, M.S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J., 2010, 24(9), 3562-3571. doi: 10.1096/fj.09-152488 PMID: 20418498
- Asai, O.; Nakatani, K.; Tanaka, T.; Sakan, H.; Imura, A.; Yoshimoto, S.; Samejima, K.; Yamaguchi, Y.; Matsui, M.; Akai, Y.; Konishi, N.; Iwano, M.; Nabeshima, Y.; Saito, Y. Decreased renal α-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int., 2012, 81(6), 539-547. doi: 10.1038/ki.2011.423 PMID: 22217880
- Miao, J.; Huang, J.; Luo, C.; Ye, H.; Ling, X.; Wu, Q.; Shen, W.; Zhou, L. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol. Rep., 2021, 9(2), e14696. doi: 10.14814/phy2.14696 PMID: 33463897
- Zhou, D.; Tan, R.J.; Fu, H.; Liu, Y. Wnt/β-catenin signaling in kidney injury and repair: A double-edged sword. Lab. Invest., 2016, 96(2), 156-167. doi: 10.1038/labinvest.2015.153 PMID: 26692289
- He, W.; Dai, C.; Li, Y.; Zeng, G.; Monga, S.P.; Liu, Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol., 2009, 20(4), 765-776. doi: 10.1681/ASN.2008060566 PMID: 19297557
- Zhou, L.; Li, Y.; Hao, S.; Zhou, D.; Tan, R.J.; Nie, J.; Hou, F.F.; Kahn, M.; Liu, Y. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol., 2015, 26(1), 107-120. doi: 10.1681/ASN.2014010085 PMID: 25012166
- Luo, C.; Zhou, S.; Zhou, Z.; Liu, Y.; Yang, L.; Liu, J.; Zhang, Y.; Li, H.; Liu, Y.; Hou, F.F.; Zhou, L. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J. Am. Soc. Nephrol., 2018, 29(4), 1238-1256. doi: 10.1681/ASN.2017050574 PMID: 29440280
- Kitada, M.; Kume, S.; Takeda-Watanabe, A.; Kanasaki, K.; Koya, D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 153-164. doi: 10.1042/CS20120190 PMID: 23075334
- Ogura, Y.; Kitada, M.; Koya, D. Sirtuins and renal oxidative stress. Antioxidants, 2021, 10(8), 1198. doi: 10.3390/antiox10081198 PMID: 34439446
- Tanaka, Y.; Kume, S.; Kitada, M.; Kanasaki, K.; Uzu, T.; Maegawa, H.; Koya, D. Autophagy as a therapeutic target in diabetic nephropathy. Exp. Diabetes Res., 2012, 2012, 1-12. doi: 10.1155/2012/628978 PMID: 22028701
- Chuang, P.Y.; Cai, W.; Li, X.; Fang, L.; Xu, J.; Yacoub, R.; He, J.C.; Lee, K. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. Am. J. Physiol. Renal Physiol., 2017, 313(3), F621-F628. doi: 10.1152/ajprenal.00255.2017 PMID: 28615249
- Kume, S.; Kitada, M.; Kanasaki, K.; Maegawa, H.; Koya, D. Anti-aging molecule, Sirt1: A novel therapeutic target for diabetic nephropathy. Arch. Pharm. Res., 2013, 36(2), 230-236. doi: 10.1007/s12272-013-0019-4 PMID: 23361587
- Ledford, H. Sirtuin protein linked to longevity in mammals. Nature, 2012. doi: 10.1038/nature.2012.10074
- Someya, S.; Yu, W.; Hallows, W.C.; Xu, J.; Vann, J.M.; Leeuwenburgh, C.; Tanokura, M.; Denu, J.M.; Prolla, T.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 2010, 143(5), 802-812. doi: 10.1016/j.cell.2010.10.002 PMID: 21094524
- Cai, J.; Liu, Z.; Huang, X.; Shu, S.; Hu, X.; Zheng, M.; Tang, C.; Liu, Y.; Chen, G.; Sun, L.; Liu, H.; Liu, F.; Cheng, J.; Dong, Z. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int., 2020, 97(1), 106-118. doi: 10.1016/j.kint.2019.08.028 PMID: 31787254
- Bonafè, M.; Sabbatinelli, J.; Olivieri, F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res. Rev., 2020, 59, 101027. doi: 10.1016/j.arr.2020.101027 PMID: 32068123
- Tennen, R.I.; Chua, K.F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci., 2011, 36(1), 39-46. doi: 10.1016/j.tibs.2010.07.009 PMID: 20729089
- Ji, L.; Chen, Y.; Wang, H.; Zhang, W.; He, L.; Wu, J.; Liu, Y. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int. J. Oncol., 2019, 55(1), 103-115. doi: 10.3892/ijo.2019.4800 PMID: 31115579
- Hasegawa, K.; Wakino, S.; Yoshioka, K.; Tatematsu, S.; Hara, Y.; Minakuchi, H.; Washida, N.; Tokuyama, H.; Hayashi, K.; Itoh, H. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun., 2008, 372(1), 51-56. doi: 10.1016/j.bbrc.2008.04.176 PMID: 18485895
- Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol., 2008, 9(5), 367-377. doi: 10.1038/nrm2391 PMID: 18401346
- Ryan, A.S. Insulin resistance with aging: Effects of diet and exercise. Sports Med., 2000, 30(5), 327-346. doi: 10.2165/00007256-200030050-00002 PMID: 11103847
- Engfeldt, P.; Arner, P. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm. Metab. Res. Suppl., 1988, 19, 26-29. PMID: 3069692
- Han, L.L.; Bai, X.J.; Lin, H.L.; Sun, X.F.; Chen, X.M. Association between kidney and cardiac diastolic function in Chinese subjects without overt disease: Correlation with ageing and inflammatory markers. Eur. J. Clin. Invest., 2011, 41(10), 1077-1086. doi: 10.1111/j.1365-2362.2011.02503.x PMID: 21413979
- Matoba, K.; Takeda, Y.; Nagai, Y.; Kawanami, D.; Utsunomiya, K.; Nishimura, R. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int. J. Mol. Sci., 2019, 20(14), 3393. doi: 10.3390/ijms20143393 PMID: 31295940
- Satirapoj, B.; Dispan, R.; Radinahamed, P.; Kitiyakara, C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol., 2018, 19(1), 246. doi: 10.1186/s12882-018-1043-x PMID: 30241508
- Yang, X.; Liu, S.; Zhang, R.; Sun, B.; Zhou, S.; Chen, R.; Yu, P. Microribonucleic acid-192 as a specific biomarker for the early diagnosis of diabetic kidney disease. J. Diabetes Investig., 2018, 9(3), 602-609. doi: 10.1111/jdi.12753 PMID: 28940849
- Wu, C.; Wang, Q.; Lv, C.; Qin, N.; Lei, S.; Yuan, Q.; Wang, G. The changes of serum sKlotho and NGAL levels and their correlation in type 2 diabetes mellitus patients with different stages of urinary albumin. Diabetes Res. Clin. Pract., 2014, 106(2), 343-350. doi: 10.1016/j.diabres.2014.08.026 PMID: 25263500
- Fountoulakis, N.; Maltese, G.; Gnudi, L.; Karalliedde, J. Reduced levels of anti-ageing hormone klotho predict renal function decline in type 2 diabetes. J. Clin. Endocrinol. Metab., 2018, 103(5), 2026-2032. doi: 10.1210/jc.2018-00004 PMID: 29509906
- Ruggenenti, P.; Abbate, M.; Ruggiero, B.; Rota, S.; Trillini, M.; Aparicio, C.; Parvanova, A.; Petrov Iliev, I.; Pisanu, G.; Perna, A.; Russo, A.; Diadei, O.; Martinetti, D.; Cannata, A.; Carrara, F.; Ferrari, S.; Stucchi, N.; Remuzzi, G.; Fontana, L. Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: A randomized controlled trial. Diabetes, 2017, 66(1), 75-86. doi: 10.2337/db16-0607 PMID: 27634224
- Chu, S.H.; Yang, D.; Wang, Y.; Yang, R.; Qu, L.; Zeng, H. Effect of resveratrol on the repair of kidney and brain injuries and its regulation on klotho gene in d-galactose-induced aging mice. Bioorg. Med. Chem. Lett., 2021, 40, 127913. doi: 10.1016/j.bmcl.2021.127913 PMID: 33705905
- Fouque, D.; Pelletier, S.; Mafra, D.; Chauveau, P. Nutrition and chronic kidney disease. Kidney Int., 2011, 80(4), 348-357. doi: 10.1038/ki.2011.118 PMID: 21562470
- Kume, S.; Koya, D. Autophagy: A novel therapeutic target for diabetic nephropathy. Diabetes Metab. J., 2015, 39(6), 451-460. doi: 10.4093/dmj.2015.39.6.451 PMID: 26706914
- Liu, C.; Liu, H.; Fang, Y.; Jiang, S.; Zhu, J.; Ding, X. Rapamycin reduces renal hypoxia, interstitial inflammation and fibrosis in a rat model of unilateral ureteral obstruction. Clin. Invest. Med., 2014, 37(3), 142. doi: 10.25011/cim.v37i3.21381 PMID: 24895989
- Liu, Y. Rapamycin and chronic kidney disease: Beyond the inhibition of inflammation. Kidney Int., 2006, 69(11), 1925-1927. doi: 10.1038/sj.ki.5001543 PMID: 16724087
- Houde, V.P.; Brûlé, S.; Festuccia, W.T.; Blanchard, P.G.; Bellmann, K.; Deshaies, Y.; Marette, A. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes, 2010, 59(6), 1338-1348. doi: 10.2337/db09-1324 PMID: 20299475
- You, H.; Gao, T.; Cooper, T.K.; Brian Reeves, W.; Awad, A.S. Macrophages directly mediate diabetic renal injury. Am. J. Physiol. Renal Physiol., 2013, 305(12), F1719-F1727. doi: 10.1152/ajprenal.00141.2013 PMID: 24173355
- Sharma, D.; Bhattacharya, P.; Kalia, K.; Tiwari, V. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res. Clin. Pract., 2017, 128, 91-108. doi: 10.1016/j.diabres.2017.04.010 PMID: 28453961
- Bolignano, D.; Cernaro, V.; Gembillo, G.; Baggetta, R.; Buemi, M.; DArrigo, G. Antioxidant agents for delaying diabetic kidney disease progression: A systematic review and meta-analysis. PLoS One, 2017, 12(6), e0178699. doi: 10.1371/journal.pone.0178699 PMID: 28570649
- Zhao, Y.; Zhang, W.; Jia, Q.; Feng, Z.; Guo, J.; Han, X.; Liu, Y.; Shang, H.; Wang, Y.; Liu, W.J. High dose vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress. Front. Physiol., 2019, 9, 1939. doi: 10.3389/fphys.2018.01939 PMID: 30719008
- Aghadavod, E.; Soleimani, A.; Hamidi, G.; Keneshlou, F.; Heidari, A.; Asemi, Z. Effects of high-dose vitamin E supplementation on markers of cardiometabolic risk and oxidative stress in patients with diabetic nephropathy: A randomized double-blinded controlled trial. Iran. J. Kidney Dis., 2018, 12(3), 156-162. PMID: 29891745
- Wu, C.; Qin, N.; Ren, H.; Yang, M.; Liu, S.; Wang, Q. Metformin regulating mir-34a pathway to inhibit egr1 in rat mesangial cells cultured with high glucose. Int. J. Endocrinol., 2018, 2018, 1-15. doi: 10.1155/2018/6462793 PMID: 29681936
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; Cannon, C.P.; Capuano, G.; Chu, P.L.; de Zeeuw, D.; Greene, T.; Levin, A.; Pollock, C.; Wheeler, D.C.; Yavin, Y.; Zhang, H.; Zinman, B.; Meininger, G.; Brenner, B.M.; Mahaffey, K.W. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med., 2019, 380(24), 2295-2306. doi: 10.1056/NEJMoa1811744 PMID: 30990260
- Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204. doi: 10.1152/ajprenal.00520.2013 PMID: 24226524
- Jayarathne, H.S.M.; Debarba, L.K.; Jaboro, J.J.; Ginsburg, B.C.; Miller, R.A.; Sadagurski, M. Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice. Aging Cell, 2022, 21(7), e13653. doi: 10.1111/acel.13653 PMID: 35707855
- Miller, R.A.; Harrison, D.E.; Allison, D.B.; Bogue, M.; Debarba, L.; Diaz, V.; Fernandez, E.; Galecki, A.; Garvey, W.T.; Jayarathne, H.; Kumar, N.; Javors, M.A.; Ladiges, W.C.; Macchiarini, F.; Nelson, J.; Reifsnyder, P.; Rosenthal, N.A.; Sadagurski, M.; Salmon, A.B.; Smith, D.L., Jr; Snyder, J.M.; Lombard, D.B.; Strong, R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight, 2020, 5(21), e140019. doi: 10.1172/jci.insight.140019 PMID: 32990681
- Snyder, J.M.; Casey, K.M.; Galecki, A.; Harrison, D.E.; Jayarathne, H.; Kumar, N.; Macchiarini, F.; Rosenthal, N.; Sadagurski, M.; Salmon, A.B.; Strong, R.; Miller, R.A.; Ladiges, W. Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice. Geroscience, 2023, 45(1), 385-397. doi: 10.1007/s11357-022-00641-0 PMID: 35974129
- Kröller-Schön, S.; Knorr, M.; Hausding, M.; Oelze, M.; Schuff, A.; Schell, R.; Sudowe, S.; Scholz, A.; Daub, S.; Karbach, S.; Kossmann, S.; Gori, T.; Wenzel, P.; Schulz, E.; Grabbe, S.; Klein, T.; Münzel, T.; Daiber, A. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc. Res., 2012, 96(1), 140-149. doi: 10.1093/cvr/cvs246 PMID: 22843705
- Rodríguez-Iturbe, B.; Quiroz, Y.; Shahkarami, A.; Li, Z.; Vaziri, N.D. Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat. Kidney Int., 2005, 68(3), 1041-1047. doi: 10.1111/j.1523-1755.2005.00496.x PMID: 16105034
- Kawahara, T.L.A.; Michishita, E.; Adler, A.S.; Damian, M.; Berber, E.; Lin, M.; McCord, R.A.; Ongaigui, K.C.L.; Boxer, L.D.; Chang, H.Y.; Chua, K.F. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell, 2009, 136(1), 62-74. doi: 10.1016/j.cell.2008.10.052 PMID: 19135889
- Han, S.J.; Kim, H.J.; Kim, D.J.; Sheen, S.S.; Chung, C.H.; Ahn, C.W.; Kim, S.H.; Cho, Y.W.; Park, S.W.; Kim, S.K.; Kim, C.S.; Kim, K.W.; Lee, K.W. Effects of pentoxifylline on proteinuria and glucose control in patients with type 2 diabetes: A prospective randomized double-blind multicenter study. Diabetol. Metab. Syndr., 2015, 7(1), 64. doi: 10.1186/s13098-015-0060-1 PMID: 26300986
- Gu, Y.Y.; Lu, F.H.; Huang, X.R.; Zhang, L.; Mao, W.; Yu, X.Q.; Liu, X.S.; Lan, H.Y. Non-coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease. Front. Pharmacol., 2021, 11, 583528. doi: 10.3389/fphar.2020.583528 PMID: 33574750
- Esmaeili, S.; Motamedrad, M.; Hemmati, M.; Mehrpour, O.; Khorashadizadeh, M. Prevention of kidney cell damage in hyperglycaemia condition by adiponectin. Cell Biochem. Funct., 2019, 37(3), 148-152. doi: 10.1002/cbf.3380 PMID: 30908696
- Hickson, L.J.; Langhi Prata, L.G.P.; Bobart, S.A.; Evans, T.K.; Giorgadze, N.; Hashmi, S.K.; Herrmann, S.M.; Jensen, M.D.; Jia, Q.; Jordan, K.L.; Kellogg, T.A.; Khosla, S.; Koerber, D.M.; Lagnado, A.B.; Lawson, D.K.; LeBrasseur, N.K.; Lerman, L.O.; McDonald, K.M.; McKenzie, T.J.; Passos, J.F.; Pignolo, R.J.; Pirtskhalava, T.; Saadiq, I.M.; Schaefer, K.K.; Textor, S.C.; Victorelli, S.G.; Volkman, T.L.; Xue, A.; Wentworth, M.A.; Wissler Gerdes, E.O.; Zhu, Y.; Tchkonia, T.; Kirkland, J.L. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019, 47, 446-456. doi: 10.1016/j.ebiom.2019.08.069 PMID: 31542391
- Zhang, D.; Ma, M.; Liu, Y. Protective effects of incretin against age-related diseases. Curr. Drug Deliv., 2019, 16(9), 793-806. doi: 10.2174/1567201816666191010145029 PMID: 31622202
- Coppolino, G.; Leporini, C.; Rivoli, L.; Ursini, F.; di Paola, E.D.; Cernaro, V.; Arturi, F.; Bolignano, D.; Russo, E.; De Sarro, G.; Andreucci, M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol. Res., 2018, 129, 274-294. doi: 10.1016/j.phrs.2017.12.001 PMID: 29223646
- Shi, J.X.; Huang, Q. Glucagon-like peptide-1 protects mouse podocytes against high glucose-induced apoptosis, and suppresses reactive oxygen species production and proinflammatory cytokine secretion, through sirtuin 1 activation in vitro. Mol. Med. Rep., 2018, 18(2), 1789-1797. doi: 10.3892/mmr.2018.9085 PMID: 29845208
Supplementary files
