Natural Coumarin Derivatives Targeting Melanoma


Cite item

Full Text

Abstract

In general, a cancerous process starts from uncontrolled cell growth, apoptosis, and rapid proliferation of cellular clones, as well as, reactive oxygen species (ROS) and imbalance of ROS-antioxidant production also could be involved in the genesis of the disease. Cancer has accounted for millions of deaths worldwide every year, representing a relevant threat to human lives. In this context, malignant melanoma represents the most aggressive and deadliest type of cancer, leading to increased rates of patient deaths. Natural active compounds have demonstrated their pharmacological benefits in several different studies. Among these compounds, coumarin analogs have demonstrated promising biological profiles, considering their efficacy and low toxicity. In this context, this phytochemical oxygenated core has been broadly investigated since it presents several biological properties of interest in the medicinal field. Herein, we reported a complete compilation of studies focused on natural coumarins against melanoma, as well as, tyrosinase since it is a cooper-catalyzed oxidase that performs an essential role during melanogenesis (Eu-melanins and Pheo-melanins), which is associated with melanoma. Thus, three different subclasses of natural coumarin were described in detail, such as simple coumarin core, furanocoumarins, pyranocoumarins, and pyrone-substituents. Additionally, insights on tyrosinase have been provided, allowing an overview of some structural/- functional aspects of its enzyme, such as the presence of a binuclear type 3 cooper coordination at the binding site of this target, acting as cofactors. Posteriorly, several coumarin- based analogs with anti-tyrosinase activity also were reported and discussed. Finally, we believe that unprecedented review can be a valuable source of information, which can be used to design and develop novel coumarin-based analogs targeting melanoma and also tyrosinase enzyme, contributing to the advances in the field of natural products.

About the authors

Leandro Silva

Institute of Chemistry and Biotechnology, Federal University of Alagoas,

Email: info@benthamscience.net

Jéssica Nunes

Institute of Chemistry and Biotechnology, Federal University of Alagoas

Email: info@benthamscience.net

Peng Zhan

Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University,

Email: info@benthamscience.net

Krzysztof Łączkowski

Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy,, Nicolaus Copernicus University

Email: info@benthamscience.net

Sílvia Cardoso

Laboratory of Organic and Medicinal Synthesis,, Federal University of Alagoas, Campus Arapiraca

Email: info@benthamscience.net

Edeildo da Silva-Júnior

Institute of Chemistry and Biotechnology, Federal University of Alagoas

Author for correspondence.
Email: info@benthamscience.net

References

  1. Desai, A.; Qazi, G.; Ganju, R.; El-Tamer, M.; Singh, J.; Saxena, A.; Bedi, Y.; Taneja, S.; Bhat, H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591. doi: 10.2174/138920008785821657 PMID: 18781909
  2. Richter, L.; Kropp, S.; Proksch, P.; Scheu, S. A mouse model-based screening platform for the identification of immune activating compounds such as natural products for novel cancer immunotherapies. Bioorg. Med. Chem., 2019, 27(23), 115145. doi: 10.1016/j.bmc.2019.115145 PMID: 31648874
  3. Yao, W.; Qiu, H.M.; Cheong, K.L.; Zhong, S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int. J. Biol. Macromol., 2022, 221, 472-485. doi: 10.1016/j.ijbiomac.2022.09.055 PMID: 36089081
  4. Veselinović, J.B.; Kocić, G.M.; Pavic, A.; Nikodinovic-Runic, J.; Senerovic, L.; Nikolić, G.M.; Veselinović, A.M. Selected 4-phenyl hydroxycoumarins: in vitro cytotoxicity, teratogenic effect on zebrafish (Danio rerio) embryos and molecular docking study. Chem. Biol. Interact., 2015, 231, 10-17. doi: 10.1016/j.cbi.2015.02.011 PMID: 25724286
  5. Farhat, C.; Younes, H.; Alyamani, O.A.; Mrad, M.; Hourani, N.; Khalifeh, H.; El-Makhour, Y.; Dbaibo, G.; Hage-Sleiman, R. Chemical characterization and in vitro biological evaluation of aqueous extract of Althaea officinalis L. flower grown in Lebanon. J. Herb. Med., 2022, 34, 100575. doi: 10.1016/j.hermed.2022.100575
  6. Sailaja Rao, P.; Kalva, S.; Yerramilli, A.; Mamidi, S. Free radicals and tissue damage: Role of antioxidants. Free Radic. Antioxid., 2011, 1(4), 2-7. doi: 10.5530/ax.2011.4.2
  7. Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186. doi: 10.1136/jcp.54.3.176 PMID: 11253127
  8. Genestra, M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal., 2007, 19(9), 1807-1819. doi: 10.1016/j.cellsig.2007.04.009 PMID: 17570640
  9. Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424. doi: 10.1152/physrev.00029.2006 PMID: 17237348
  10. Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem., 2004, 266(1/2), 37-56. doi: 10.1023/B:MCBI.0000049134.69131.89 PMID: 15646026
  11. Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(5), 1147-1150. doi: 10.1042/BST0351147 PMID: 17956298
  12. Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest developments in metal complexes as anticancer agents. Coord. Chem. Rev., 2022, 452, 214307. doi: 10.1016/j.ccr.2021.214307
  13. Yuan, Y.; Shi, C.; Wu, X.; Li, W.; Huang, C.; Liang, L.; Chen, J.; Wang, Y.; Liu, Y. Synthesis and anticancer activity in vitro and in vivo evaluation of iridium(III) complexes on mouse melanoma B16 cells. J. Inorg. Biochem., 2022, 232, 111820. doi: 10.1016/j.jinorgbio.2022.111820 PMID: 35421766
  14. Zaid, H.; Silbermann, M.; Amash, A.; Gincel, D.; Abdel-Sattar, E.; Sarikahya, N.B. Medicinal plants and natural active compounds for cancer chemoprevention/chemotherapy. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-2. doi: 10.1155/2017/7952417 PMID: 28491112
  15. AlQathama, A.; Bader, A.; Al-Rehaily, A.; Gibbons, S.; Prieto, J.M. In vitro cytotoxic activities of selected Saudi medicinal plants against human malignant melanoma cells (A375) and the isolation of their active principles. Eur. J. Integr. Med., 2022, 49, 102083. doi: 10.1016/j.eujim.2021.102083
  16. Nanni, V.; Canuti, L.; Gismondi, A.; Canini, A. Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. Phytomedicine, 2018, 46, 1-10. doi: 10.1016/j.phymed.2018.06.008 PMID: 30097108
  17. Danciu, C.; Soica, C.; Antal, D.; Alexa, E.; Pavel, I.Z.; Ghiulai, R.; Ardelean, F.; Babuta, R.M.; Popescu, A.; Dehelean, C.A. Natural compounds in the chemoprevention of malignant melanoma. Anticancer. Agents Med. Chem., 2018, 18(5), 631-644. doi: 10.2174/1871520617666171121142522 PMID: 29173184
  18. Hasima, N.; Aun, L.I.L.; Azmi, M.N.; Aziz, A.N.; Thirthagiri, E.; Ibrahim, H.; Awang, K. 1′S-1′-Acetoxyeugenol acetate: A new chemotherapeutic natural compound against MCF-7 human breast cancer cells. Phytomedicine, 2010, 17(12), 935-939. doi: 10.1016/j.phymed.2010.03.011 PMID: 20729047
  19. Shefrin, S.; Sari, A.N.; Kumar, V.; Zhang, H.; Meidinnia, H.N.; Kaul, S.C.; Wadhwa, R.; Sundar, D. Comparative computational and experimental analyses of some natural small molecules to restore transcriptional activation function of P53 in cancer cells harbouring wild type and P53Ser46 mutant. Curr. Res. Struct. Biol., 2022, 4, 320-331.
  20. Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951. doi: 10.2174/092986711803414395 PMID: 21824098
  21. Thomas, V.; Giles, D.; Basavarajaswamy, G.; Das, A.; Patel, A. Coumarin derivatives as anti-inflammatory and anticancer agents. Anticancer. Agents Med. Chem., 2017, 17(3), 415-423. doi: 10.2174/1871520616666160902094739 PMID: 27592545
  22. Bubols, G.B.; Vianna, Dda.R.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334. PMID: 22876957
  23. Salar, U.; Khan, K.M.; Jabeen, A.; Faheem, A.; Fakhri, M.I.; Saad, S.M.; Perveen, S.; Taha, M.; Hameed, A. Coumarin sulfonates: As potential leads for ROS inhibition. Bioorg. Chem., 2016, 69, 37-47. doi: 10.1016/j.bioorg.2016.09.006 PMID: 27669119
  24. Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol., 2020, 10, 592853. doi: 10.3389/fonc.2020.592853 PMID: 33344242
  25. Sumorek-Wiadro, J.; Zając, A.; Bądziul, D.; Langner, E.; Skalicka-Woźniak, K.; Maciejczyk, A.; Wertel, I.; Rzeski, W.; Jakubowicz-Gil, J. Coumarins modulate the anti-glioma properties of temozolomide. Eur. J. Pharmacol., 2020, 881, 173207. doi: 10.1016/j.ejphar.2020.173207 PMID: 32446712
  26. Amin, K.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin–pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198. doi: 10.1016/j.ejmech.2012.12.004 PMID: 23291120
  27. Khan, S.; Zafar, A.; Naseem, I. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention. Chem. Biol. Interact., 2018, 290, 64-76. doi: 10.1016/j.cbi.2018.05.010 PMID: 29803612
  28. Grötz, K.A.; Wüstenberg, P.; Kohnen, R.; Al-Nawas, B.; Henneicke-von Zepelin, H.H.; Bockisch, A.; Kutzner, J.; Naser-Hijazi, B.; Belz, G.G.; Wagner, W. Prophylaxis of radiogenic sialadenitis and mucositis by coumarin/troxerutine in patients with head and neck cancer – a prospective, randomized, placebo-controlled, double-blind study. Br. J. Oral Maxillofac. Surg., 2001, 39(1), 34-39. doi: 10.1054/bjom.2000.0459 PMID: 11178853
  29. Marshall, M.E.; Butler, K.; Hermansen, D. Treatment of hormone-refractory stage D carcinoma of prostate with coumarin (1,2-benzopyrone) and cimetidine: A pilot study. Prostate, 1990, 17(2), 95-99. doi: 10.1002/pros.2990170203 PMID: 2399194
  30. Khan, S.; Zafar, A.; Naseem, I. Redox cycling of copper by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated modulation of redox scavengers, DNA damage and cell death in diethylnitrosamine induced hepatocellular carcinoma. Bioorg. Chem., 2020, 99, 103818. doi: 10.1016/j.bioorg.2020.103818 PMID: 32276135
  31. Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672. doi: 10.1016/j.bmcl.2012.12.071 PMID: 23642480
  32. Thati, B.; Noble, A.; Creaven, B.S.; Walsh, M.; McCann, M.; Devereux, M.; Kavanagh, K.; Egan, D.A. Role of cell cycle events and apoptosis in mediating the anti-cancer activity of a silver(I) complex of 4-hydroxy-3-nitro-coumarin-bis(phenanthroline) in human malignant cancer cells. Eur. J. Pharmacol., 2009, 602(2-3), 203-214. doi: 10.1016/j.ejphar.2008.11.020 PMID: 19041861
  33. Jyothi, M.; Banumathi; Zabiulla; Sherapura, A.; Khamees, H.A.; Prabhakar, B.T.; Khanum, S.A. Synthesis, structure analysis, DFT calculations and energy frameworks of new coumarin appended oxadiazoles, to regress ascites malignancy by targeting VEGF mediated angiogenesis. J. Mol. Struct., 2022, 1252, 132173. doi: 10.1016/j.molstruc.2021.132173
  34. Lingaraju, G.S.; Balaji, K.S.; Jayarama, S.; Anil, S.M.; Kiran, K.R.; Sadashiva, M.P. Synthesis of new coumarin tethered isoxazolines as potential anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3606-3612. doi: 10.1016/j.bmcl.2018.10.046 PMID: 30396758
  35. Gray-Schopfer, V.; Wellbrock, C.; Marais, R. Melanoma biology and new targeted therapy. Nature, 2007, 445(7130), 851-857. doi: 10.1038/nature05661 PMID: 17314971
  36. Chakraborty, D.P.; Roy, S. Chemical and biological aspects of melanin.The Alkaloids: Chemistry and Biology; Cordell, E.G.A., Ed.; Academic Press Inc.: Amsterdam, 2003, pp. 345-391.
  37. CDC. What Is Skin Cancer? Available From: https://www.cdc.gov/cancer/skin/basic_info/what-is-skin- cancer.htm
  38. ACS. Key Statistics for Melanoma Skin Cancer. Available From: https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html
  39. Liu, Q.; Das, M.; Liu, Y.; Huang, L. Targeted drug delivery to melanoma. Adv. Drug Deliv. Rev., 2018, 127, 208-221. doi: 10.1016/j.addr.2017.09.016 PMID: 28939379
  40. Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet, 2018, 392(10151), 971-984. doi: 10.1016/S0140-6736(18)31559-9 PMID: 30238891
  41. Huda, M.N.; Deaguero, I.G.; Borrego, E.A.; Kumar, R.; Islam, T.; Afrin, H.; Varela-Ramirez, A.; Aguilera, R.J.; Tanner, E.E.L.; Nurunnabi, M. Ionic liquid-mediated delivery of a BCL-2 inhibitor for topical treatment of skin melanoma. J. Control. Release, 2022, 349, 783-795. doi: 10.1016/j.jconrel.2022.07.035 PMID: 35908622
  42. Jenkins, R.W.; Fisher, D.E. Treatment of advanced melanoma in 2020 and beyond. J. Invest. Dermatol., 2021, 141(1), 23-31. doi: 10.1016/j.jid.2020.03.943 PMID: 32268150
  43. Domingues, B.; Lopes, J.; Soares, P.; Pópulo, H. Melanoma treatment in review. ImmunoTargets Ther., 2018, 7, 35-49. doi: 10.2147/ITT.S134842 PMID: 29922629
  44. Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379. doi: 10.1080/15384047.2019.1640032 PMID: 31366280
  45. Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet, 2021, 398(10304), 1002-1014. doi: 10.1016/S0140-6736(21)01206-X PMID: 34509219
  46. Mishra, H.; Mishra, P.K.; Ekielski, A.; Jaggi, M.; Iqbal, Z.; Talegaonkar, S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. Clin. Oncol., 2018, 144(12), 2283-2302. doi: 10.1007/s00432-018-2726-1 PMID: 30094536
  47. Tangella, L.P.; Clark, M.E.; Gray, E.S. Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(1), 129736. doi: 10.1016/j.bbagen.2020.129736 PMID: 32956754
  48. Kozar, I.; Margue, C.; Rothengatter, S.; Haan, C.; Kreis, S. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 313-322. doi: 10.1016/j.bbcan.2019.02.002 PMID: 30776401
  49. Fontana, F.; Raimondi, M.; Di Domizio, A.; Moretti, R.M.; Montagnani Marelli, M.; Limonta, P. Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin. Cancer Biol., 2019, 59, 266-282. doi: 10.1016/j.semcancer.2019.06.011 PMID: 31233829
  50. Essa, A.F.; El-Hawary, S.S.; Emam, S.E.; Kubacy, T.M.; El-Khrisy, E.E.D.A.M.; Younis, I.Y.; Elshamy, A.I. Characterization of undescribed melanoma inhibitors from Euphorbia mauritanica L. cultivated in Egypt targeting BRAFV600E and MEK 1 kinases via in-silico study and ADME prediction. Phytochemistry, 2022, 198, 113154. doi: 10.1016/j.phytochem.2022.113154 PMID: 35245525
  51. Marrelli, M.; Perri, M.R.; Amodeo, V.; Giordano, F.; Statti, G.A.; Panno, M.L.; Conforti, F. Assessment of photo-induced cytotoxic activity of Cachrys sicula and Cachrys libanotis enriched-coumarin extracts against human melanoma cells. Plants, 2021, 10(1), 123. doi: 10.3390/plants10010123 PMID: 33435579
  52. Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer, 2009, 62(1), 1-20. doi: 10.1080/01635580903191585 PMID: 20043255
  53. Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, 2013, 1-14. doi: 10.1155/2013/963248 PMID: 23586066
  54. Önder, A. Anticancer activity of natural coumarins for biological targets. Studies in Natural Products Chemistry; Rahman, A.U. Elsevier: Amsterdam, 2020, pp. 85-109.
  55. Finn, G.J.; Creaven, B.S.; Egan, D.A. A study of the role of cell cycle events mediating the action of coumarin derivatives in human malignant melanoma cells. Cancer Lett., 2004, 214(1), 43-54. doi: 10.1016/j.canlet.2004.04.022 PMID: 15331172
  56. Egan, D.; O’kennedy, R.; Moran, E.; Cox, D.; Prosser, E.; Thornes, R.D. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab. Rev., 1990, 22(5), 503-529. doi: 10.3109/03602539008991449 PMID: 2078993
  57. Musa, M.A.; Badisa, V.L.D.; Latinwo, L.M.; Cooperwood, J.; Sinclair, A.; Abdullah, A. Cytotoxic activity of new acetoxycoumarin derivatives in cancer cell lines. Anticancer Res., 2011, 31(6), 2017-2022. PMID: 21737617
  58. Velascovelázquez, M.; Agramonte-Hevia, J.; Barrera, D.; Jiménez-Orozco, A.; García-Mondragón, M.J.; Mendoza-Patiño, N.; Landa, A.; Mandoki, J. 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16?F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett., 2003, 198(2), 179-186. doi: 10.1016/S0304-3835(03)00333-1 PMID: 12957356
  59. Jiménez-Orozco, F.A.; Molina-Guarneros, J.A.; Mendoza-Patiño, N.; León-Cedeño, F.; Flores-Pérez, B.; Santos-Santos, E.; Mandokl, J.J. Cytostatic activity of coumarin metabolites and derivatives in the B16-F10 murine melanoma cell line. Melanoma Res., 1999, 9(3), 243-248. doi: 10.1097/00008390-199906000-00005 PMID: 10465579
  60. Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 2020, 12(7), 1959. doi: 10.3390/cancers12071959 PMID: 32707666
  61. Penta, S. Introduction to coumarin and SAR. Advances in structure and activity relationship of coumarin derivatives. ; Penta, S., Ed.; Academic Press Inc.: Amsterdam, 2016, pp. 1-8. doi: 10.1016/B978-0-12-803797-3.00001-1
  62. Jeon, Y.J.; Jang, J.Y.; Shim, J.H.; Myung, P.K.; Chae, J.I. Esculetin, a coumarin derivative, exhibits anti-proliferative and pro-apoptotic activity in G361 human malignant melanoma. J. Cancer Prev., 2015, 20(2), 106-112. doi: 10.15430/JCP.2015.20.2.106 PMID: 26151043
  63. Barthomeuf, C.; Lim, S.; Iranshahi, M.; Chollet, P. Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine, 2008, 15(1-2), 103-111. doi: 10.1016/j.phymed.2007.04.001 PMID: 17689942
  64. Carneiro Leite, V.; Ferreira Santos, R.; Chen Chen, L.; Andreu Guillo, L. Psoralen derivatives and longwave ultraviolet irradiation are active in vitro against human melanoma cell line. J. Photochem. Photobiol. B, 2004, 76(1-3), 49-53. doi: 10.1016/j.jphotobiol.2004.07.004 PMID: 15488715
  65. Kim, Y.K.; Kim, Y.S.; Ryu, S.Y. Antiproliferative effect of furanocoumarins from the root of Angelica dahurica on cultured human tumor cell lines. Phytother. Res., 2007, 21(3), 288-290. doi: 10.1002/ptr.2043 PMID: 17143927
  66. Sumiyoshi, M.; Sakanaka, M.; Taniguchi, M.; Baba, K.; Kimura, Y. Anti-tumor effects of various furocoumarins isolated from the roots, seeds and fruits of Angelica and Cnidium species under ultraviolet A irradiation. J. Nat. Med., 2014, 68(1), 83-94. doi: 10.1007/s11418-013-0774-z PMID: 23649674
  67. Urbagarova, B.M.; Shults, E.E.; Taraskin, V.V.; Radnaeva, L.D.; Petrova, T.N.; Rybalova, T.V.; Frolova, T.S.; Pokrovskii, A.G.; Ganbaatar, J. Chromones and coumarins from Saposhnikovia divaricata (Turcz.) Schischk. Growing in Buryatia and Mongolia and their cytotoxicity. J. Ethnopharmacol., 2020, 261, 112517. doi: 10.1016/j.jep.2019.112517 PMID: 31931162
  68. Veselinović, J.B.; Veselinović, A.M.; Ilic-Tomic, T.; Davis, R.; O’Connor, K.; Pavic, A.; Nikodinovic-Runic, J. Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies. Bioorg. Med. Chem., 2017, 25(24), 6286-6296. doi: 10.1016/j.bmc.2017.09.021 PMID: 29042224
  69. Fiorito, S.; Epifano, F.; Preziuso, F.; Cacciatore, I.; di Stefano, A.; Taddeo, V.A.; de Medina, P.; Genovese, S. Natural oxyprenylated coumarins are modulators of melanogenesis. Eur. J. Med. Chem., 2018, 152, 274-282. doi: 10.1016/j.ejmech.2018.04.051 PMID: 29730190
  70. Cheng, J.X.; Li, Y.Q.; Cai, J.; Zhang, C.F.; Akihisa, T.; Li, W.; Kikuchi, T.; Liu, W.Y.; Feng, F.; Zhang, J. Phenolic compounds from Ficus hispida L.f. as tyrosinase and melanin inhibitors: Biological evaluation, molecular docking, and molecular dynamics. J. Mol. Struct., 2021, 1244, 130951. doi: 10.1016/j.molstruc.2021.130951
  71. Mahendra Kumar, C.; Sathisha, U.V.; Dharmesh, S.; Rao, A.G.A.; Singh, S.A. Interaction of sesamol (3,4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochimie, 2011, 93(3), 562-569. doi: 10.1016/j.biochi.2010.11.014 PMID: 21144881
  72. Mayer, A.M. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 2006, 67(21), 2318-2331. doi: 10.1016/j.phytochem.2006.08.006 PMID: 16973188
  73. Theos, A.C.; Tenza, D.; Martina, J.A.; Hurbain, I.; Peden, A.A.; Sviderskaya, E.V.; Stewart, A.; Robinson, M.S.; Bennett, D.C.; Cutler, D.F.; Bonifacino, J.S.; Marks, M.S.; Raposo, G. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol. Biol. Cell, 2005, 16(11), 5356-5372. doi: 10.1091/mbc.e05-07-0626 PMID: 16162817
  74. Barton, D.E.; Kwon, B.S.; Francke, U. Human tyrosinase gene, mapped to chromosome 11 (q14 → q21), defines second region of homology with mouse chromosome 7. Genomics, 1988, 3(1), 17-24. doi: 10.1016/0888-7543(88)90153-X PMID: 3146546
  75. Rosada, B.; Bekier, A.; Cytarska, J.; Płaziński, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Łączkowski, K.Z. Benzobthiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity. Eur. J. Med. Chem., 2019, 184, 111765. doi: 10.1016/j.ejmech.2019.111765 PMID: 31629163
  76. Jaenicke, E.; Decker, H. Tyrosinases from crustaceans form hexamers. Biochem. J., 2003, 371(2), 515-523. doi: 10.1042/bj20021058 PMID: 12466021
  77. D'Orazio, J.A.; Marsch, A.; Lagrew, J.; Veith, B. Skin pigmentation and melanoma risk. Advances in Malignant Melanoma - Clinical and Research Perspectives; InTech, 2011.
  78. García-Borrón, J.C.; Olivares Sánchez, M.C. Biosynthesis of Melanins. Melanins and Melanosomes; Wiley, 2011, pp. 87-116. doi: 10.1002/9783527636150.ch4
  79. Hearing, V.J., Jr; Ekel, T.M.; Montague, P.M.; Nicholson, J.M. Mammalin tyrosinase. Stoichiometry and measurement of reaction products. Biochimica et Biophysica Acta (BBA) - Enzymology, 1980, 611(2), 251-268. doi: 10.1016/0005-2744(80)90061-3 PMID: 6766744
  80. Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50(24), 5477-5486. doi: 10.1021/bi200395t PMID: 21598903
  81. Choi, H.; Yoon, J.H.; Youn, K.; Jun, M. Decursin prevents melanogenesis by suppressing MITF expression through the regulation of PKA/CREB, MAPKs, and PI3K/Akt/GSK-3β cascades. Biomed. Pharmacother., 2022, 147, 112651. doi: 10.1016/j.biopha.2022.112651 PMID: 35063859
  82. Thornes, R.D.; Daly, L.; Lynch, G.; Breslin, B.; Browne, H.; Browne, H.Y.; Corrigan, T.; Daly, P.; Edwards, G.; Gaffney, E.; Henley, J.; Healy, T.; Keane, F.; Lennon, F.; McMurray, N.; O’Loughlin, S.; Shine, M.; Tanner, A. Treatment with coumarin to prevent or delay recurrence of malignant melanoma. J. Cancer Res. Clin. Oncol., 1994, 120(S1)(Suppl.), S32-S34. doi: 10.1007/BF01377122 PMID: 8132701
  83. Pynam, H.; Dharmesh, S.M. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed. Pharmacother., 2018, 106, 98-108. doi: 10.1016/j.biopha.2018.06.053 PMID: 29957472
  84. Finn, G.J.; Creaven, B.S.; Egan, D.A. Activation of mitogen activated protein kinase pathways and melanogenesis by novel nitro-derivatives of 7-hydroxycomarin in human malignant melanoma cells. Eur. J. Pharm. Sci., 2005, 26(1), 16-25. doi: 10.1016/j.ejps.2005.04.016 PMID: 15996858
  85. Yang, H.H.; Oh, K.E.; Jo, Y.H.; Ahn, J.H.; Liu, Q.; Turk, A.; Jang, J.Y.; Hwang, B.Y.; Lee, K.Y.; Lee, M.K. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorg. Med. Chem., 2018, 26(2), 509-515. doi: 10.1016/j.bmc.2017.12.011 PMID: 29254897
  86. Küçükaydın, S.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. HPLC-DAD phytochemical profiles of Thymus cariensis and T. cilicicus with antioxidant, cytotoxic, anticholinesterase, anti-urease, anti-tyrosinase, and antidiabetic activities. S. Afr. J. Bot., 2021, 143, 155-163. doi: 10.1016/j.sajb.2021.07.018
  87. Ersoy, E.; Eroglu Ozkan, E.; Boga, M.; Yilmaz, M.A.; Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Ind. Crops Prod., 2019, 141, 111735. doi: 10.1016/j.indcrop.2019.111735
  88. Kamauchi, H.; Noji, M.; Kinoshita, K.; Takanami, T.; Koyama, K. Coumarins with an unprecedented tetracyclic skeleton and coumarin dimers from chemically engineered extracts of a marine-derived fungus. Tetrahedron, 2018, 74(23), 2846-2856. doi: 10.1016/j.tet.2018.04.033

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers