Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review
- Authors: Dana P.1, Hallajzadeh J.2, Asemi Z.1, Mansournia M.3, Yousefi B.4
-
Affiliations:
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences
- Molecular Medicine Research Center, Tabriz University of Medical Sciences
- Issue: Vol 31, No 23 (2024)
- Pages: 3488-3501
- Section: Anti-Infectives and Infectious Diseases
- URL: https://jdigitaldiagnostics.com/0929-8673/article/view/645219
- DOI: https://doi.org/10.2174/0929867330666230518143654
- ID: 645219
Cite item
Full Text
Abstract
Melanoma accounts for the minority of skin cancer cases. However, it has the highest mortality rate among the subtypes of skin cancer. At the early stages of the disease, patients show a good prognosis after the surgery, but developing metastases leads to a remarkable drop in patients 5-year survival rate. Despite the advances made in the therapeutic approaches to this disease, melanoma treatment is still facing several obstacles. Systemic toxicity, water insolubility, instability, lack of proper biodistribution, inadequate cellular penetration, and rapid clearance are some of the challenges that should be addressed in the field of melanoma treatment. While various delivery systems have been developed to circumvent these challenges, chitosan-based delivery platforms have indicated significant success. Chitosan that is produced by the deacetylation of chitin can be formulated into different materials (e.g., nanoparticle, film, and hydrogel) due to its characteristics. Both in vitro and in vivo studies have reported that chitosan-based materials can be used in drug delivery systems while offering a solution for the common problems in this area, such as enhancing biodistribution and skin penetration as well as the sustained release of the drugs. Herein, we reviewed the studies concerning the role of chitosan as a drug delivery system in melanoma and discussed how these drug systems are used for delivering chemotherapeutic drugs (e.g., doxorubicin and paclitaxel), genes (e.g., TRAIL), and RNAs (e.g., miRNA199a and STAT3 siRNA) successfully. Furthermore, we take a look into the role of chitosan-based nanoparticles in neutron capture therapy.
Keywords
About the authors
Parisa Dana
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences
Email: info@benthamscience.net
Jamal Hallajzadeh
Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Zatollah Asemi
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Mohammad Mansournia
Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences
Email: info@benthamscience.net
Bahman Yousefi
Molecular Medicine Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
References
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379. doi: 10.1080/15384047.2019.1640032 PMID: 31366280
- Nabavi, S.M.; Russo, G.L.; Tedesco, I.; Daglia, M.; Orhan, I.E.; Nabavi, S.F.; Bishayee, A.; Nagulapalli, V.K.C.; Abdollahi, M.; Hajheydari, Z. Curcumin and melanoma: From chemistry to medicine. Nutr. Cancer, 2018, 70(2), 164-175. doi: 10.1080/01635581.2018.1412485 PMID: 29300102
- Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; Stebbings, L.; Menzies, A.; Widaa, S.; Stratton, M.R.; Jones, P.H.; Campbell, P.J. High burden and pervasive positive selection of somatic mutations in normal human skin. Science, 2015, 348(6237), 880-886. doi: 10.1126/science.aaa6806 PMID: 25999502
- Robles-Espinoza, C.D.; Roberts, N.D.; Chen, S.; Leacy, F.P.; Alexandrov, L.B.; Pornputtapong, N.; Halaban, R.; Krauthammer, M.; Cui, R.; Timothy, B.D.; Adams, D.J. Germline MC1R status influences somatic mutation burden in melanoma. Nat. Commun., 2016, 7(1), 12064. doi: 10.1038/ncomms12064 PMID: 27403562
- Williams, P.F.; Olsen, C.M.; Hayward, N.K.; Whiteman, D.C. Melanocortin 1 receptor and risk of cutaneous melanoma: A meta-analysis and estimates of population burden. Int. J. Cancer, 2011, 129(7), 1730-1740. doi: 10.1002/ijc.25804 PMID: 21128237
- Alshamsan, A.; Hamdy, S.; Haddadi, A.; Samuel, J.; El-Kadi, A.O.S.; Uludağ, H.; Lavasanifar, A. STAT3 knockdown in b16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Transl. Oncol., 2011, 4(3), 178-188. doi: 10.1593/tlo.11100 PMID: 21633673
- Lens, M.B.; Dawes, M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br. J. Dermatol., 2004, 150(2), 179-185. doi: 10.1111/j.1365-2133.2004.05708.x PMID: 14996086
- Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Cutaneous melanoma. Lancet, 2005, 365(9460), 687-701. doi: 10.1016/S0140-6736(05)17951-3 PMID: 15721476
- Gowda, R.; Robertson, B.M.; Iyer, S.; Barry, J.; Dinavahi, S.S.; Robertson, G.P. The role of exosomes in metastasis and progression of melanoma. Cancer Treat. Rev., 2020, 85, 101975. doi: 10.1016/j.ctrv.2020.101975 PMID: 32050108
- Liu, Q.; Das, M.; Liu, Y.; Huang, L. Targeted drug delivery to melanoma. Adv. Drug Deliv. Rev., 2018, 127, 208-221. doi: 10.1016/j.addr.2017.09.016 PMID: 28939379
- Mundra, V.; Li, W.; Mahato, R.I. Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine, 2015, 10(16), 2613-2633. doi: 10.2217/nnm.15.111 PMID: 26244818
- Hudson, D.; Margaritis, A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol., 2014, 34(2), 161-179. doi: 10.3109/07388551.2012.743503 PMID: 23294062
- Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater., 2010, 11(1), 014104. doi: 10.1088/1468-6996/11/1/014104 PMID: 27877319
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28. doi: 10.1016/j.jconrel.2004.08.010 PMID: 15491807
- Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Vaghari, H.; Anarjan, N.; Ahmadi, O.; Berenjian, A. Chitosan magnetic nanoparticles for drug delivery systems. Crit. Rev. Biotechnol., 2017, 37(4), 492-509. doi: 10.1080/07388551.2016.1185389 PMID: 27248312
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020, 21(2), 487. doi: 10.3390/ijms21020487 PMID: 31940963
- Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent advances in application of chitosan in fuel cells. Sustain. Chem. Process., 2013, 1(1), 16. doi: 10.1186/2043-7129-1-16
- Ryu, J.H.; Yoon, H.Y.; Sun, I.C.; Kwon, I.C.; Kim, K. Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv. Mater., 2020, 32(51), 2002197. doi: 10.1002/adma.202002197 PMID: 33051905
- Gover Antoniraj, M.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. Int. J. Biol. Macromol., 2020, 147, 1268-1277. doi: 10.1016/j.ijbiomac.2019.09.254 PMID: 31770556
- Kiti, K.; Suwantong, O. The potential use of curcumin-β- cyclodextrin inclusion complex/chitosan-loaded cellulose sponges for the treatment of chronic wound. Int. J. Biol. Macromol., 2020, 164, 3250-3258. doi: 10.1016/j.ijbiomac.2020.08.190 PMID: 32860794
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 2020, 164, 2726-2744. doi: 10.1016/j.ijbiomac.2020.08.153 PMID: 32841671
- Xie, M.; Huang, K.; Yang, F.; Wang, R.; Han, L.; Yu, H.; Ye, Z.; Wu, F. Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications. Int. J. Biol. Macromol., 2020, 151, 1116-1125. doi: 10.1016/j.ijbiomac.2019.10.154 PMID: 31751717
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1358-1368. doi: 10.1016/j.ijbiomac.2017.07.087 PMID: 28735006
- Caracciolo, G.; Vali, H.; Moore, A.; Mahmoudi, M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 2019, 27, 6-10. doi: 10.1016/j.nantod.2019.06.001
- Hoda, J.M.; Mohammad, A.G.J.; Aydin, B. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol., 2012, 8(4)
- Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomedicine, 2011, 6, 765-774. PMID: 21589644
- Pang, Y.; Qin, A.; Lin, X.; Yang, L.; Wang, Q.; Wang, Z.; Shan, Z.; Li, S.; Wang, J.; Fan, S.; Hu, Q. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget, 2017, 8(22), 35583-35591. doi: 10.18632/oncotarget.14709 PMID: 28103580
- Liu, J.; Meng, C.; Liu, S.; Kan, J.; Jin, C. Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocoll., 2017, 63, 457-466. doi: 10.1016/j.foodhyd.2016.09.035
- Gallaher, C.M.; Munion, J.; Gallaher, D.D.; Hesslink, R., Jr; Wise, J. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J. Nutr., 2000, 130(11), 2753-2759. doi: 10.1093/jn/130.11.2753 PMID: 11053517
- Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447. doi: 10.1016/j.pharmthera.2019.107447 PMID: 31756363
- Lee, W.; Song, G.; Bae, H. Matairesinol induces mitochondrial dysfunction and exerts synergistic anticancer effects with 5-fluorouracil in pancreatic cancer cells. Mar. Drugs, 2022, 20(8), 473. doi: 10.3390/md20080473 PMID: 35892941
- Mahajan, U.M.; Li, Q.; Alnatsha, A.; Maas, J.; Orth, M.; Maier, S.H.; Peterhansl, J.; Regel, I.; Sendler, M.; Wagh, P.R.; Mishra, N.; Xue, Y.; Allawadhi, P.; Beyer, G.; Kühn, J.P.; Marshall, T.; Appel, B.; Lämmerhirt, F.; Belka, C.; Müller, S.; Weiss, F.U.; Lauber, K.; Lerch, M.M.; Mayerle, J. Tumor-specific delivery of 5-fluorouracilincorporated epidermal growth factor receptortargeted aptamers as an efficient treatment in pancreatic ductal adenocarcinoma models. Gastroenterology, 2021, 161(3), 996-1010.e1. doi: 10.1053/j.gastro.2021.05.055 PMID: 34097885
- Nomura, H.; Tsuji, D.; Ueno, S.; Kojima, T.; Fujii, S.; Yano, T.; Daiko, H.; Demachi, K.; Itoh, K.; Kawasaki, T. Relevance of pharmacogenetic polymorphisms with response to docetaxel, cisplatin, and 5-fluorouracil chemotherapy in esophageal cancer. Invest. New Drugs, 2022, 40(2), 420-429. doi: 10.1007/s10637-021-01199-y PMID: 34792690
- Mafi, A.; Rezaee, M.; Hedayati, N.; Hogan, S.D.; Reiter, R.J.; Aarabi, M.H.; Asemi, Z. Melatonin and 5-fluorouracil combination chemotherapy: Opportunities and efficacy in cancer therapy. Cell Commun. Signal., 2023, 21(1), 33. doi: 10.1186/s12964-023-01047-x PMID: 36759799
- Khan, M.A.; Pandit, J.; Sultana, Y.; Sultana, S.; Ali, A.; Aqil, M.; Chauhan, M. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: In vitro characterization and in vivo study. Drug Deliv., 2015, 22(6), 795-802. doi: 10.3109/10717544.2014.902146 PMID: 24735246
- She, W.; Luo, K.; Zhang, C.; Wang, G.; Geng, Y.; Li, L.; He, B.; Gu, Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendrondoxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34(5), 1613-1623. doi: 10.1016/j.biomaterials.2012.11.007 PMID: 23195490
- Sahu, P.; Kashaw, S.K.; Sau, S.; Kushwah, V.; Jain, S.; Agrawal, R.K.; Iyer, A.K. pH responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf. B Biointerfaces, 2019, 174, 232-245. doi: 10.1016/j.colsurfb.2018.11.018 PMID: 30465998
- Hu, W.; Zhang, C.; Fang, Y.; Lou, C. Anticancer properties of 10-hydroxycamptothecin in a murine melanoma pulmonary metastasis model in vitro and in vivo. Toxicol. In Vitro, 2011, 25(2), 513-520. doi: 10.1016/j.tiv.2010.11.009 PMID: 21093576
- Li, J.; Xu, W.; Li, D.; Liu, T.; Zhang, Y.S.; Ding, J.; Chen, X. Locally deployable nanofiber patch for sequential drug delivery in treatment of primary and advanced orthotopic hepatomas. ACS Nano, 2018, 12(7), 6685-6699. doi: 10.1021/acsnano.8b01729 PMID: 29874035
- Guo, H.; Li, F.; Xu, W.; Chen, J.; Hou, Y.; Wang, C.; Ding, J.; Chen, X. Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv. Sci., 2018, 5(6), 1800004. doi: 10.1002/advs.201800004 PMID: 29938183
- Guo, H.; Li, F.; Qiu, H.; Liu, J.; Qin, S.; Hou, Y.; Wang, C. Preparation and characterization of chitosan nanoparticles for chemotherapy of melanoma through enhancing tumor penetration. Front. Pharmacol., 2020, 11, 317. doi: 10.3389/fphar.2020.00317 PMID: 32231576
- Fan, X.; Song, J.; Zhao, Z.; Chen, M.; Tu, J.; Lu, C.; Wu, F.; Zhang, D.; Weng, Q.; Zheng, L.; Xu, M.; Ji, J. Piplartine suppresses proliferation and invasion of hepatocellular carcinoma by LINC01391-modulated Wnt/β-catenin pathway inactivation through ICAT. Cancer Lett., 2019, 460, 119-127. doi: 10.1016/j.canlet.2019.06.008 PMID: 31207322
- Oliveira, M.S.; Barbosa, M.I.F.; de Souza, T.B.; Moreira, D.R.M.; Martins, F.T.; Villarreal, W.; Machado, R.P.; Doriguetto, A.C.; Soares, M.B.P.; Bezerra, D.P. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol., 2019, 20, 182-194. doi: 10.1016/j.redox.2018.10.006 PMID: 30359932
- Fofaria, N.M.; Qhattal, H.S.S.; Liu, X.; Srivastava, S.K. Nanoemulsion formulations for anti-cancer agent piplartine-Characterization, toxicological, pharmacokinetics and efficacy studies. Int. J. Pharm., 2016, 498(1-2), 12-22. doi: 10.1016/j.ijpharm.2015.11.045 PMID: 26642946
- Giacone, D.V. Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer models. Int J Biol Macromol, 2020, 165(Pt A), 1055-1065. doi: 10.1016/j.ijbiomac.2020.09.167
- Ji, Z.; Xu, J.; Li, M.; Wang, H.; Xu, B.; Yang, Y.; Hu, Y. The mechanisms of immune-chemotherapy with nanocomplex codelivery of pTRP-2 and adjuvant of paclitaxel against melanoma. Drug Dev. Ind. Pharm., 2021, 47(11), 1744-1752. doi: 10.1080/03639045.2022.2045306 PMID: 35193436
- Liu, X.; Xu, Y.; Yin, L.; Hou, Y.; Zhao, S. Chitosan-Poly(Acrylic Acid) nanoparticles loaded with R848 and MnCl2 inhibit melanoma via regulating macrophage polarization and dendritic cell maturation. Int. J. Nanomed., 2021, 16, 5675-5692. doi: 10.2147/IJN.S318363 PMID: 34456564
- He, J.; Duan, S.; Yu, X.; Qian, Z.; Zhou, S.; Zhang, Z.; Huang, X.; Huang, Y.; Su, J.; Lai, C.; Meng, J.; Zhou, N.; Lu, X.; Zhao, Y. Folate-modified chitosan nanoparticles containing the ip-10 gene enhance melanoma-specific cytotoxic CD8+ CD28+ T lymphocyte responses. Theranostics, 2016, 6(5), 752-761. doi: 10.7150/thno.14527 PMID: 27022421
- Li, X.; Dong, W.; Nalin, A.P.; Wang, Y.; Pan, P.; Xu, B.; Zhang, Y.; Tun, S.; Zhang, J.; Wang, L.S.; He, X.; Caligiuri, M.A.; Yu, J. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. OncoImmunology, 2018, 7(6), e1431085. doi: 10.1080/2162402X.2018.1431085 PMID: 29872557
- Won, J.E.; Wi, T.I.; Lee, C.M.; Lee, J.H.; Kang, T.H.; Lee, J.W.; Shin, B.C.; Lee, Y.; Park, Y.M.; Han, H.D. NIR irradiation-controlled drug release utilizing injectable hydrogels containing gold-labeled liposomes for the treatment of melanoma cancer. Acta Biomater., 2021, 136, 508-518. doi: 10.1016/j.actbio.2021.09.062 PMID: 34626819
- Mirzaei, H.; Mirzaei, H.R.; Sahebkar, A.; Salehi, R.; Nahand, J.S.; Karimi, E.; Jaafari, M.R. Boron neutron capture therapy: Moving toward targeted cancer therapy. J. Cancer Res. Ther., 2016, 12(2), 520-525. doi: 10.4103/0973-1482.176167 PMID: 27461603
- Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res., 2005, 11(11), 3987-4002. doi: 10.1158/1078-0432.CCR-05-0035 PMID: 15930333
- Yong, Z.; Song, Z.; Zhou, Y.; Liu, T.; Zhang, Z.; Zhao, Y.; Chen, Y.; Jin, C.; Chen, X.; Lu, J.; Han, R.; Li, P.; Sun, X.; Wang, G.; Shi, G.; Zhu, S. Boron neutron capture therapy for malignant melanoma: First clinical case report in China. Chin. J. Cancer Res., 2016, 28(6), 634-640. doi: 10.21147/j.issn.1000-9604.2016.06.10 PMID: 28174492
- Wang, L.W.; Liu, Y.W.H.; Chou, F.I.; Jiang, S.H. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua open pool reactor. Cancer Commun., 2018, 38(1), 37. doi: 10.1186/s40880-018-0295-y PMID: 29914577
- Barth, R.F.; Zhang, Z.; Liu, T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun., 2018, 38(1), 36. doi: 10.1186/s40880-018-0280-5 PMID: 29914575
- Miyatake, S.I.; Wanibuchi, M.; Hu, N.; Ono, K. Boron neutron capture therapy for malignant brain tumors. J. Neurooncol., 2020, 149(1), 1-11. doi: 10.1007/s11060-020-03586-6 PMID: 32676954
- Takeuchi, I.; Ariyama, M.; Makino, K. Chitosan coating effect on cellular uptake of PLGA nanoparticles for boron neutron capture therapy. J. Oleo Sci., 2019, 68(4), 361-368. doi: 10.5650/jos.ess18239 PMID: 30867387
- Ichikawa, H.; Watanabe, T.; Tokumitsu, H.; Fukumori, Y. Formulation considerations of gadolinium lipid nanoemulsion for intravenous delivery to tumors in neutron-capture therapy. Curr. Drug Deliv., 2007, 4(2), 131-140. doi: 10.2174/156720107780362294 PMID: 17456032
- Ichikawa, H.; Uneme, T.; Andoh, T.; Arita, Y.; Fujimoto, T.; Suzuki, M.; Sakurai, Y.; Shinto, H.; Fukasawa, T.; Fujii, F.; Fukumori, Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl. Radiat. Isot., 2014, 88, 109-113. doi: 10.1016/j.apradiso.2013.12.018 PMID: 24462286
- Zhou, J.; Xu, D.; Xie, H.; Tang, J.; Liu, R.; Li, J.; Wang, S.; Chen, X.; Su, J.; Zhou, X.; Xia, K.; He, Q.; Chen, J.; Xiong, W.; Cao, P.; Cao, K. miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol. Ther., 2015, 16(6), 846-855. doi: 10.1080/15384047.2015.1030545 PMID: 25891797
- Xu, D.; Tan, J.; Zhou, M.; Jiang, B.; Xie, H.; Nie, X.; Xia, K.; Zhou, J. Let-7b and microRNA-199a inhibit the proliferation of B16F10 melanoma cells. Oncol. Lett., 2012, 4(5), 941-946. doi: 10.3892/ol.2012.878 PMID: 23162627
- Uchino, K.; Ochiya, T.; Takeshita, F. RNAi therapeutics and applications of microRNAs in cancer treatment. Jpn. J. Clin. Oncol., 2013, 43(6), 596-607. doi: 10.1093/jjco/hyt052 PMID: 23592885
- Liu, C.A.; Chang, C.Y.; Hsueh, K.W.; Su, H.L.; Chiou, T.W.; Lin, S.Z.; Harn, H.J. Migration/invasion of malignant gliomas and implications for therapeutic treatment. Int. J. Mol. Sci., 2018, 19(4), 1115. doi: 10.3390/ijms19041115 PMID: 29642503
- Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol., 2021, 905, 174178. doi: 10.1016/j.ejphar.2021.174178 PMID: 34044011
- Petrocca, F.; Lieberman, J. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol., 2011, 29(6), 747-754. doi: 10.1200/JCO.2009.27.6287 PMID: 21079135
- Rahman, M.A.; Amin, A.R.M.R.; Wang, X.; Zuckerman, J.E.; Choi, C.H.J.; Zhou, B.; Wang, D.; Nannapaneni, S.; Koenig, L.; Chen, Z.; Chen, Z.G.; Yen, Y.; Davis, M.E.; Shin, D.M. Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. J. Control. Release, 2012, 159(3), 384-392. doi: 10.1016/j.jconrel.2012.01.045 PMID: 22342644
- Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; Gounder, M.M.; Falzone, R.; Harrop, J.; White, A.C.S.; Toudjarska, I.; Bumcrot, D.; Meyers, R.E.; Hinkle, G.; Svrzikapa, N.; Hutabarat, R.M.; Clausen, V.A.; Cehelsky, J.; Nochur, S.V.; Gamba-Vitalo, C.; Vaishnaw, A.K.; Sah, D.W.Y.; Gollob, J.A.; Burris, H.A., III First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov., 2013, 3(4), 406-417. doi: 10.1158/2159-8290.CD-12-0429 PMID: 23358650
- Nguyen, J.; Szoka, F.C. Nucleic acid delivery: The missing pieces of the puzzle? Acc. Chem. Res., 2012, 45(7), 1153-1162. doi: 10.1021/ar3000162 PMID: 22428908
- Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; DHaese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; Jérôme, C.; Préat, V. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J. Control. Release, 2014, 176, 54-63. doi: 10.1016/j.jconrel.2013.12.026 PMID: 24389132
- Kortylewski, M.; Jove, R.; Yu, H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev., 2005, 24(2), 315-327. doi: 10.1007/s10555-005-1580-1 PMID: 15986140
- Xie, T.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res., 2006, 66(6), 3188-3196. doi: 10.1158/0008-5472.CAN-05-2674 PMID: 16540670
- Labala, S.; Jose, A.; Venuganti, V.V.K. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf. B Biointerfaces, 2016, 146, 188-197. doi: 10.1016/j.colsurfb.2016.05.076 PMID: 27318964
- Zhuang, L.; Lee, C.S.; Scolyer, R.A.; McCarthy, S.W.; Zhang, X.D.; Thompson, J.F.; Screaton, G.; Hersey, P. Progression in melanoma is associated with decreased expression of death receptors for tumor necrosis factorrelated apoptosis-inducing ligand. Hum. Pathol., 2006, 37(10), 1286-1294. doi: 10.1016/j.humpath.2006.04.026 PMID: 16949935
- Alvizo-Baez, C.A.; Luna-Cruz, I.E.; Vilches-Cisneros, N.; Rodríguez-Padilla, C.; Alcocer-González, J.M. Systemic delivery and activation of the TRAIL gene in lungs, with magnetic nanoparticles of chitosan controlled by an external magnetic field. Int. J. Nanomed., 2016, 11, 6449-6458. doi: 10.2147/IJN.S118343 PMID: 27980403
- Chen, Y.Z.; Yao, X.L.; Ruan, G.X.; Zhao, Q.Q.; Tang, G.P.; Tabata, Y.; Gao, J.Q. Gene-carried chitosan-linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol. Appl. Biochem., 2012, 59(5), 346-352. doi: 10.1002/bab.1036 PMID: 23586911
- Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv. Pharm. Bull., 2019, 9(2), 195-204. doi: 10.15171/apb.2019.023 PMID: 31380245
- Kim, J.H.; Kim, Y.S.; Kim, S.; Park, J.H.; Kim, K.; Choi, K.; Chung, H.; Jeong, S.Y.; Park, R.W.; Kim, I.S.; Kwon, I.C. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J. Control. Release, 2006, 111(1-2), 228-234. doi: 10.1016/j.jconrel.2005.12.013 PMID: 16458988
- Bae, K.H.; Moon, C.W.; Lee, Y.; Park, T.G. Intracellular delivery of heparin complexed with chitosan-g-poly(ethylene glycol) for inducing apoptosis. Pharm. Res., 2009, 26(1), 93-100. doi: 10.1007/s11095-008-9713-1 PMID: 18777202
- Zhou, T.; Xiao, C.; Fan, J.; Chen, S.; Shen, J.; Wu, W.; Zhou, S. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomater., 2013, 9(1), 4546-4557. doi: 10.1016/j.actbio.2012.08.017 PMID: 22906624
- Li, S.; Zhang, F.; Yu, Y.; Zhang, Q. A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy. Carbohydr. Polym., 2020, 235, 115983. doi: 10.1016/j.carbpol.2020.115983 PMID: 32122513
- Sharma, S.; Verma, A.; Pandey, G.; Mittapelly, N.; Mishra, P.R. Investigating the role of pluronic-g-cationic polyelectrolyte as functional stabilizer for nanocrystals: Impact on paclitaxel oral bioavailability and tumor growth. Acta Biomater., 2015, 26, 169-183. doi: 10.1016/j.actbio.2015.08.005 PMID: 26265061
- Liu, X.; Zhou, S.; Li, X.; Chen, X.; Zhao, X.; Qian, Z.; Zhou, L.; Li, Z.; Wang, Y.; Zhong, Q.; Yi, T.; Li, Z.; He, X.; Wei, Y. Anti-tumor activity of N-trimethyl chitosan-encapsulated camptothecin in a mouse melanoma model. J. Exp. Clin. Cancer Res., 2010, 29(1), 76. doi: 10.1186/1756-9966-29-76 PMID: 20565783
- Joshi, N.; Saha, R.; Shanmugam, T.; Balakrishnan, B.; More, P.; Banerjee, R. Carboxymethyl-chitosan-tethered lipid vesicles: Hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules, 2013, 14(7), 2272-2282. doi: 10.1021/bm400406x PMID: 23721348
- Mandala Rayabandla, S.K.; Aithal, K.; Anandam, A.; Shavi, G.; Nayanabhirama, U.; Arumugam, K.; Musmade, P.; Bhat, K.; Bola, S.S.R. Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv., 2010, 17(3), 103-113. doi: 10.3109/10717540903548447 PMID: 20100068
- Venâncio, J.H.; Andrade, L.M.; Esteves, N.L.S.; Brito, L.B.; Valadares, M.C.; Oliveira, G.A.R.; Lima, E.M.; Marreto, R.N.; Gratieri, T.; Taveira, S.F. Topotecan-loaded lipid nanoparticles as a viable tool for the topical treatment of skin cancers. J. Pharm. Pharmacol., 2017, 69(10), 1318-1326. doi: 10.1111/jphp.12772 PMID: 28703281
- Liu, F.; Feng, L.; Zhang, L.; Zhang, X.; Zhang, N. Synthesis, characterization and antitumor evaluation of CMCSDTX conjugates as novel delivery platform for docetaxel. Int. J. Pharm., 2013, 451(1-2), 41-49. doi: 10.1016/j.ijpharm.2013.04.020 PMID: 23608199
- Battogtokh, G.; Ko, Y.T. Self-assembled polymeric nanoparticle of PEGylated chitosanceramide conjugate for systemic delivery of paclitaxel. J. Drug Target., 2014, 22(9), 813-821. doi: 10.3109/1061186X.2014.930469 PMID: 24964055
- Loch-Neckel, G.; Santos-Bubniak, L.; Mazzarino, L.; Jacques, A.V.; Moccelin, B.; Santos-Silva, M.C.; Lemos-Senna, E. Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs. J. Pharm. Sci., 2015, 104(10), 3524-3534. doi: 10.1002/jps.24548 PMID: 26085173
- Liu, F.; Li, M.; Liu, C.; Liu, Y.; Liang, Y.; Wang, F.; Zhang, N. Tumor-specific delivery and therapy by double- targeted DTX-CMCS-PEG-NGR conjugates. Pharm. Res., 2014, 31(2), 475-488. doi: 10.1007/s11095-013-1176-3 PMID: 24043295
- Ferraz, L.S.; Watashi, C.M.; Colturato-Kido, C.; Pelegrino, M.T.; Paredes-Gamero, E.J.; Weller, R.B.; Seabra, A.B.; Rodrigues, T. Antitumor potential of s-nitrosothiol- containing polymeric nanoparticles against melanoma. Mol. Pharm., 2018, 15(3), 1160-1168. doi: 10.1021/acs.molpharmaceut.7b01001 PMID: 29378125
- Battogtokh, G.; Ko, Y.T. Self-assembled chitosan-ceramide nanoparticle for enhanced oral delivery of paclitaxel. Pharm. Res., 2014, 31(11), 3019-3030. doi: 10.1007/s11095-014-1395-2 PMID: 24825757
- Mazzarino, L.; Otsuka, I.; Halila, S.; Bubniak, L.S.; Mazzucco, S.; Santos-Silva, M.C.; Lemos-Senna, E.; Borsali, R. Xyloglucan-block-poly(ϵ-caprolactone) copolymer nanoparticles coated with chitosan as biocompatible mucoadhesive drug delivery system. Macromol. Biosci., 2014, 14(5), 709-719. doi: 10.1002/mabi.201300465 PMID: 24469965
- Siddiqui, I.A.; Bharali, D.J.; Nihal, M.; Adhami, V.M.; Khan, N.; Chamcheu, J.C.; Khan, M.I.; Shabana, S.; Mousa, S.A.; Mukhtar, H. Excellent anti-proliferative and pro-apoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine, 2014, 10(8), 1619-1626. doi: 10.1016/j.nano.2014.05.007 PMID: 24965756
- Xu, M.; Asghar, S.; Dai, S.; Wang, Y.; Feng, S.; Jin, L.; Shao, F.; Xiao, Y. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int. J. Biol. Macromol., 2019, 134, 1002-1012. doi: 10.1016/j.ijbiomac.2019.04.201 PMID: 31063785
- Shen, H.; Shi, H.; Xie, M.; Ma, K.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Biodegradable chitosan/alginate BSA-gel-capsules for pH-controlled loading and release of doxorubicin and treatment of pulmonary melanoma. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(32), 3906-3917. doi: 10.1039/c3tb20330a PMID: 32261218
- Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid nanostructured films for topical administration of simvastatin as coadjuvant treatment of melanoma. J. Pharm. Sci., 2019, 108(10), 3396-3407. doi: 10.1016/j.xphs.2019.06.002 PMID: 31201905
- Lee, S.Y.; Koo, J.S.; Yang, M.; Cho, H.J. Application of temporary agglomeration of chitosan-coated nanoparticles for the treatment of lung metastasis of melanoma. J. Colloid Interface Sci., 2019, 544, 266-275. doi: 10.1016/j.jcis.2019.02.092 PMID: 30852352
- Kim, S.; Liu, Y.; Gaber, M.W.; Bumgardner, J.D.; Haggard, W.O.; Yang, Y. Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90B(1), 145-155. doi: 10.1002/jbm.b.31266 PMID: 18985785
- Ferreira, T.A.; de Carvalho, S.S.M.; Cardoso, B.R.; L Silva, S.M.; Sabino, G.M.A.; B de Lima, A.G.; L Fook, M.V. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials, 2018, 11(10), 2051. doi: 10.3390/ma11102051 PMID: 30347857
- Stie, M.B.; Thoke, H.S.; Issinger, O.G.; Hochscherf, J.; Guerra, B.; Olsen, L.F. Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells. Colloids Surf. B Biointerfaces, 2019, 174, 216-223. doi: 10.1016/j.colsurfb.2018.11.005 PMID: 30465996
- Lee, E.H.; Lim, S.J.; Lee, M.K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr. Polym., 2019, 224, 115143. doi: 10.1016/j.carbpol.2019.115143 PMID: 31472877
- Bragta, P.; Sidhu, R.K.; Jyoti, K.; Baldi, A.; Jain, U.K.; Chandra, R.; Madan, J. Intratumoral administration of carboplatin bearing poly (ε-caprolactone) nanoparticles amalgamated with in situ gel tendered augmented drug delivery, cytotoxicity, and apoptosis in melanoma tumor. Colloids Surf. B Biointerfaces, 2018, 166, 339-348. doi: 10.1016/j.colsurfb.2018.03.009 PMID: 29627747
- Yoncheva, K.; Merino, M.; Shenol, A.; Daskalov, N.T.; Petkov, P.S.; Vayssilov, G.N.; Garrido, M.J. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int. J. Pharm., 2019, 556, 1-8. doi: 10.1016/j.ijpharm.2018.11.070 PMID: 30529664
- Zhu, L.F.; Zheng, Y.; Fan, J.; Yao, Y.; Ahmad, Z.; Chang, M.W. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci., 2019, 137, 105002. doi: 10.1016/j.ejps.2019.105002 PMID: 31302215
- Radmansouri, M.; Bahmani, E.; Sarikhani, E.; Rahmani, K.; Sharifianjazi, F.; Irani, M. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int. J. Biol. Macromol., 2018, 116, 378-384. doi: 10.1016/j.ijbiomac.2018.04.161 PMID: 29723626
- Nawaz, A.; Wong, T.W. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate particles: Microwave modulated uptake by skin and melanoma cells. J. Invest. Dermatol., 2018, 138(11), 2412-2422. doi: 10.1016/j.jid.2018.04.037 PMID: 29857069
- Chen, M.; Quan, G.; Wen, T.; Yang, P.; Qin, W.; Mai, H.; Sun, Y.; Lu, C.; Pan, X.; Wu, C. Cold to hot: Binary cooperative microneedle array-amplified photoimmunotherapy for eliciting antitumor immunity and the abscopal effect. ACS Appl. Mater. Interfaces, 2020, 12(29), 32259-32269. doi: 10.1021/acsami.0c05090 PMID: 32406239
- Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: Preparation by novel emulsion-droplet coalescence technique and characterization. Pharm. Res., 1999, 16(12), 1830-1835. doi: 10.1023/A:1018995124527 PMID: 10644070
- Tokumitsu, H.; Hiratsuka, J.; Sakurai, Y.; Kobayashi, T.; Ichikawa, H.; Fukumori, Y. Gadolinium neutron-capture therapy using novel gadopentetic acidchitosan complex nanoparticles: In vivo growth suppression of experimental melanoma solid tumor. Cancer Lett., 2000, 150(2), 177-182. doi: 10.1016/S0304-3835(99)00388-2 PMID: 10704740
- Andoh, T.; Nakatani, Y.; Suzuki, M.; Sakurai, Y.; Fujimoto, T.; Ichikawa, H. Influence of the particle size of gadolinium-loaded chitosan nanoparticles on their tumor-killing effect in neutron capture therapy in vitro. Appl. Radiat. Isot., 2020, 164, 109270. doi: 10.1016/j.apradiso.2020.109270 PMID: 32819508
- Shikata, F.; Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur. J. Pharm. Biopharm., 2002, 53(1), 57-63. doi: 10.1016/S0939-6411(01)00198-9 PMID: 11777753
Supplementary files
