Aducanumab in Alzheimers Disease: A Critical Update
- Authors: Ashique S.1, Sirohi E.1, Kumar S.1, Rihan M.2, Mishra N.3, Bhatt S.3, Gautam R.4, Singh S.5, Gupta G.6, Chellappan D.7, Dua K.8
-
Affiliations:
- Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT)
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER)
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University
- MM School of Pharmacy, Maharishi Markandeshwar University
- School of Pharmaceutical Sciences, Lovely Professional University
- School of Pharmacy, Suresh Gyan Vihar University
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU)
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney
- Issue: Vol 31, No 31 (2024)
- Pages: 5004-5026
- Section: Anti-Infectives and Infectious Diseases
- URL: https://jdigitaldiagnostics.com/0929-8673/article/view/645239
- DOI: https://doi.org/10.2174/0929867331666230727103553
- ID: 645239
Cite item
Full Text
Abstract
:Alzheimer's disease (AD) is a complex neurological disorder that results in cognitive decline. The incidence rates of AD have been increasing, particularly among individuals 60 years of age or older. In June 2021, the US FDA approved aducanumab, the first humanized monoclonal antibody, as a potential therapeutic option for AD. Clinical trials have shown this drug to effectively target the accumulation of Aβ (beta-amyloid) plaques in the brain, and its effectiveness is dependent on the dosage and duration of treatment. Additionally, aducanumab has been associated with improvements in cognitive function. Biogen, the pharmaceutical company responsible for developing and marketing aducanumab, has positioned it as a potential breakthrough for treating cerebral damage in AD. However, the drug has raised concerns due to its high cost, limitations, and potential side effects. AD is a progressive neurological condition that affects memory, cognitive function, and behaviour. It significantly impacts the quality of life of patients and caregivers and strains healthcare systems. Ongoing research focuses on developing disease-modifying therapies that can halt or slow down AD progression. The pathogenesis of AD involves various molecular cascades and signaling pathways. However, the formation of extracellular amyloid plaques is considered a critical mechanism driving the development and progression of the disease. Aducanumab, as a monoclonal antibody, has shown promising results in inhibiting amyloid plaque formation, which is the primary pathological feature of AD. This review explores the signaling pathways and molecular mechanisms through which aducanumab effectively prevents disease pathogenesis in AD.
About the authors
Sumel Ashique
Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT)
Email: info@benthamscience.net
Ekta Sirohi
Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT)
Email: info@benthamscience.net
Shubneesh Kumar
Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT)
Email: info@benthamscience.net
Mohd Rihan
Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER)
Email: info@benthamscience.net
Neeraj Mishra
Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University
Email: info@benthamscience.net
Shvetank Bhatt
Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University
Email: info@benthamscience.net
Rupesh Gautam
MM School of Pharmacy, Maharishi Markandeshwar University
Email: info@benthamscience.net
Sachin Singh
School of Pharmaceutical Sciences, Lovely Professional University
Email: info@benthamscience.net
Gaurav Gupta
School of Pharmacy, Suresh Gyan Vihar University
Author for correspondence.
Email: info@benthamscience.net
Dinesh Chellappan
Department of Life Sciences, School of Pharmacy, International Medical University (IMU)
Email: info@benthamscience.net
Kamal Dua
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney
Author for correspondence.
Email: info@benthamscience.net
References
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; OGorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimers disease. Nature, 2016, 537(7618), 50-56. doi: 10.1038/nature19323 PMID: 27582220
- Brown, M.R.; Radford, S.E.; Hewitt, E.W. Modulation of β-amyloid fibril formation in Alzheimers disease by microglia and infection. Front. Mol. Neurosci., 2020, 13, 609073. doi: 10.3389/fnmol.2020.609073 PMID: 33324164
- Arndt, J.W.; Qian, F.; Smith, B.A.; Quan, C.; Kilambi, K.P.; Bush, M.W.; Walz, T.; Pepinsky, R.B.; Bussière, T.; Hamann, S.; Cameron, T.O.; Weinreb, P.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep., 2018, 8(1), 6412. doi: 10.1038/s41598-018-24501-0 PMID: 29686315
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; OGorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. Addendum: The antibody aducanumab reduces Aβ plaques in Alzheimers disease. Nature, 2017, 546(7659), 564. doi: 10.1038/nature22809 PMID: 28640269
- Finke, J.M.; Banks, W.A. Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimers disease immunotherapy. Hum. Antibodies, 2017, 25(3-4), 131-146. doi: 10.3233/HAB-160306 PMID: 28035915
- Zhao, J.; Nussinov, R.; Ma, B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J. Biol. Chem., 2017, 292(44), 18325-18343. doi: 10.1074/jbc.M117.801514 PMID: 28924036
- Bard, F.; Cannon, C.; Barbour, R.; Burke, R.L.; Games, D.; Grajeda, H.; Guido, T.; Hu, K.; Huang, J.; Johnson- Wood, K.; Khan, K.; Kholodenko, D.; Lee, M.; Lieberburg, I.; Motter, R.; Nguyen, M.; Soriano, F.; Vasquez, N.; Weiss, K.; Welch, B.; Seubert, P.; Schenk, D.; Yednock, T. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med., 2000, 6(8), 916-919. doi: 10.1038/78682 PMID: 10932230
- Alexander, G.C.; Emerson, S.; Kesselheim, A.S. Evaluation of aducanumab for Alzheimer disease: Scientific evidence and regulatory review involving efficacy, safety, and futility. JAMA, 2021, 325(17), 1717-1718. doi: 10.1001/jama.2021.3854 PMID: 33783469
- Sabbagh, M.N.; Cummings, J. Open Peer Commentary to "Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen December 2019". Alzheimers Dement., 2021, 17(4), 702-703. doi: 10.1002/alz.12235 PMID: 33135288
- Watson, J.; Saunders, S.; Muniz Terrera, G.; Ritchie, C.; Evans, A.; Luz, S.; Clarke, C. What matters to people with memory problems, healthy volunteers and health and social care professionals in the context of developing treatment to prevent Alzheimers dementia? A qualitative study. Health Expect., 2019, 22(3), 504-517. doi: 10.1111/hex.12876 PMID: 30809895
- Haeberlein, S.B.; von Hehn, C.; Tian, Y.; Chalkias, S.; Muralidharan, K.K.; Chen, T.; Wu, S.; Skordos, L.; Nisenbaum, L.; Rajagovindan, R.; Dent, G.; Harrison, K.; Nestorov, I.; Zhu, Y.; Mallinckrodt, C.; Sandrock, A. Emerge and Engage topline results: Phase 3 studies of aducanumab in early Alzheimers disease. Alzheimers Dement., 2020, 16(S9), e047259. doi: 10.1002/alz.047259
- Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA research framework: Toward a biological definition of Alzheimers disease. Alzheimers Dement., 2018, 14(4), 535-562. doi: 10.1016/j.jalz.2018.02.018 PMID: 29653606
- The battle over an Alzheimers treatment; Biogens promising drug is caught in the FDAs political and bureaucratic limbo. 2021. Available From: https://www.wsj.com/articles/the-battle-over-an-alzheimers-treatment-11618873596
- Hardy, J.A.; Higgins, G.A. Alzheimers disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185. doi: 10.1126/science.1566067 PMID: 1566067
- Budd Haeberlein, S.; OGorman, J.; Chiao, P.; Bussière, T.; von Rosenstiel, P.; Tian, Y.; Zhu, Y.; von Hehn, C.; Gheuens, S.; Skordos, L.; Chen, T.; Sandrock, A. Clinical development of aducanumab, an Anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimers disease. J. Prev. Alzheimers Dis., 2017, 4(4), 255-263. PMID: 29181491
- Frost, C.V.; Zacharias, M. From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody studied by molecular dynamics simulation. Proteins, 2020, 88(12), 1592-1606. doi: 10.1002/prot.25978 PMID: 32666627
- Ferrero, J.; Williams, L.; Stella, H.; Leitermann, K.; Mikulskis, A.; OGorman, J.; Sevigny, J. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimers disease. Alzheimers Dement., 2016, 2(3), 169-176. doi: 10.1016/j.trci.2016.06.002 PMID: 29067304
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(9), 576-588. doi: 10.1002/psp4.12224 PMID: 28653357
- Salloway, S.; Chalkias, S.; Barkhof, F.; Burkett, P.; Barakos, J.; Purcell, D.; Suhy, J.; Forrestal, F.; Tian, Y.; Umans, K.; Wang, G.; Singhal, P.; Budd Haeberlein, S.; Smirnakis, K. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol., 2022, 79(1), 13-21. doi: 10.1001/jamaneurol.2021.4161 PMID: 34807243
- Birks, JS; Harvey, RJ Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst. Rev., 2018, 6(6), CD001190. doi: 10.1002/14651858.CD001190.pub3
- Li, D.D.; Zhang, Y.H.; Zhang, W.; Zhao, P. Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimers disease. Front. Neurosci., 2019, 13, 472. doi: 10.3389/fnins.2019.00472 PMID: 31156366
- Klyubin, I.; Walsh, D.M.; Lemere, C.A.; Cullen, W.K.; Shankar, G.M.; Betts, V.; Spooner, E.T.; Jiang, L.; Anwyl, R.; Selkoe, D.J.; Rowan, M.J. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nat. Med., 2005, 11(5), 556-561. doi: 10.1038/nm1234 PMID: 15834427
- Courtney, C.; Farrell, D.; Gray, R.; Hills, R.; Lynch, L.; Sellwood, E.; Edwards, S.; Hardyman, W.; Raftery, J.; Crome, P.; Lendon, C.; Shaw, H.; Bentham, P. Long-term donepezil treatment in 565 patients with Alzheimers disease (AD2000): Randomised double-blind trial. Lancet, 2004, 363(9427), 2105-2115. doi: 10.1016/S0140-6736(04)16499-4 PMID: 15220031
- Howard, R.; McShane, R.; Lindesay, J.; Ritchie, C.; Baldwin, A.; Barber, R.; Burns, A.; Dening, T.; Findlay, D.; Holmes, C.; Jones, R.; Jones, R.; McKeith, I.; Macharouthu, A.; OBrien, J.; Sheehan, B.; Juszczak, E.; Katona, C.; Hills, R.; Knapp, M.; Ballard, C.; Brown, R.G.; Banerjee, S.; Adams, J.; Johnson, T.; Bentham, P.; Phillips, P.P.J. Nursing home placement in the Donepezil and Memantine in Moderate to Severe Alzheimers Disease (DOMINO-AD) trial: Secondary and post-hoc analyses. Lancet Neurol., 2015, 14(12), 1171-1181. doi: 10.1016/S1474-4422(15)00258-6 PMID: 26515660
- McShane, R.; Westby, M.J.; Roberts, E.; Minakaran, N.; Schneider, L.; Farrimond, L.E.; Maayan, N.; Ware, J.; Debarros, J. Memantine for dementia. Cochrane Database Syst Rev., 2019, 3(3), CD003154. doi: 10.1002/14651858.CD003154.pub6
- Cummings, J.; Aisen, P.; Apostolova, L.G.; Atri, A.; Salloway, S.; Weiner, M. Aducanumab: Appropriate use recommendations. J. Prev. Alzheimers Dis., 2021, 8(4), 398-410. PMID: 34585212
- Nicoll, J.A.R.; Wilkinson, D.; Holmes, C.; Steart, P.; Markham, H.; Weller, R.O. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: A case report. Nat. Med., 2003, 9(4), 448-452. doi: 10.1038/nm840 PMID: 12640446
- B. Inc. Single and multiple ascending dose study of aducanumab (BIIB037) in Japanese participants with AD. 2020. Available From: https://clinicaltrials.gov/ct2/show/results/
- L. Biogen Inc and E. Co. A study to assess absolute bioavailability of aducanumab in healthy volunteers. 2021. Available From: https:// clinicaltrials.gov/ct2/show/NCT04924140
- B. Inc. A study of aducanumab in participants with mild cognitive impairment due to AD or with mild AD dementia to evaluate the safety of continued dosing in participants with asymptomatic amyloid-related imaging abnormalities. 2020. Available From: https://clinicaltrials.gov/ct2/ show/NCT03639987
- B. Inc. 221AD302 phase 3 study of aducanumab BIIB037 in early AD. Available From: https://clinicaltrials.gov/ct2/ show/NCT02484547
- B. Inc. A study to evaluate safety and tolerability of aducanumab in participants with AD who had previously participated in the aducanumab studies 221AD103, 221AD301, 221AD302 and 221AD205 2021. Available From: https:// clinicaltrials.gov/ct2/show/NCT04241068
- Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; Apostolova, L.G.; Salloway, S.P.; Skovronsky, D.M. Donanemab in early Alzheimers disease. N. Engl. J. Med., 2021, 384(18), 1691-1704. doi: 10.1056/NEJMoa2100708 PMID: 33720637
- Novak, P.; Kovacech, B.; Katina, S.; Schmidt, R.; Scheltens, P.; Kontsekova, E.; Ropele, S.; Fialova, L.; Kramberger, M.; Paulenka-Ivanovova, N.; Smisek, M.; Hanes, J.; Stevens, E.; Kovac, A.; Sutovsky, S.; Parrak, V.; Koson, P.; Prcina, M.; Galba, J.; Cente, M.; Hromadka, T.; Filipcik, P.; Piestansky, J.; Samcova, M.; Prenn-Gologranc, C.; Sivak, R.; Froelich, L.; Fresser, M.; Rakusa, M.; Harrison, J.; Hort, J.; Otto, M.; Tosun, D.; Ondrus, M.; Winblad, B.; Novak, M.; Zilka, N. ADAMANT: A placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimers disease. Nature Aging, 2021, 1(6), 521-534. doi: 10.1038/s43587-021-00070-2 PMID: 37117834
- Biogen. EMERGE and ENGAGE topline results: Two phase 3 studies to evaluate aducanumab in patients with early Alzheimers disease. ClinicalTrials on Alzheimers Disease (CTAD). San Diego 2019. Available From: https://investors.biogen.com/static-files/ddd45672-9c7e-4c99-8a06-3b557697c06f
- Tampi, R.R.; Forester, B.P.; Agronin, M. Aducanumab: Evidence from clinical trial data and controversies. Drugs Context, 2021, 10, 1-9. doi: 10.7573/dic.2021-7-3 PMID: 34650610
- Dunn, B.; Stein, P.; Cavazzoni, P. Approval of aducanumab for Alzheimer disease-the FDAs perspective. JAMA Intern. Med., 2021, 181(10), 1276-1278. doi: 10.1001/jamainternmed.2021.4607 PMID: 34254984
- Mahase, E. Three FDA advisory panel members resign over approval of Alzheimers drug. BMJ, 2021, 373, n1503. doi: 10.1136/bmj.n1503
- Talan, J. FDA panel votes No to approving aducanumab for Alzheimers, citing inconsistent data. Neurol. Today, 2020, 20(23), 1,36-38. doi: 10.1097/01.NT.0000725248.82870.33
- Mullane, K.; Williams, M. Alzheimers disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem. Pharmacol., 2020, 177, 113945. doi: 10.1016/j.bcp.2020.113945 PMID: 32247851
- Liu, K.Y.; Schneider, L.S.; Howard, R. The need to show minimum clinically important differences in Alzheimers disease trials. Lancet Psychiatry, 2021, 8(11), 1013-1016. doi: 10.1016/S2215-0366(21)00197-8 PMID: 34087114
- Luo, M.; Lee, L.K.C.; Peng, B.; Choi, C.H.J.; Tong, W.Y.; Voelcker, N.H. Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases. Adv. Sci., 2022, 9(26), 2201740. doi: 10.1002/advs.202201740 PMID: 35851766
- Mullard, A. Landmark Alzheimers drug approval confounds research community. Nature, 2021, 594(7863), 309-310. doi: 10.1038/d41586-021-01546-2 PMID: 34103732
- Loureiro, J.C.; Pais, M.V.; Stella, F.; Radanovic, M.; Teixeira, A.L.; Forlenza, O.V.; de Souza, L.C. Passive antiamyloid immunotherapy for Alzheimerʼs disease. Curr. Opin. Psychiatry, 2020, 33(3), 284-291. doi: 10.1097/YCO.0000000000000587 PMID: 32040044
- Moreth, J.; Mavoungou, C.; Schindowski, K. Passive anti-amyloid immunotherapy in Alzheimers disease: What are the most promising targets? Immun. Ageing, 2013, 10(1), 18. doi: 10.1186/1742-4933-10-18 PMID: 23663286
- Gleason, A.; Ayton, S.; Bush, A.I. Unblinded by the light: Amyloid-related imaging abnormalities in Alzheimers clinical trials. Eur. J. Neurol., 2021, 28(1), e1. doi: 10.1111/ene.14484 PMID: 32808453
- Beshir, S.A.; Aadithsoorya, A.M.; Parveen, A.; Goh, S.S.L.; Hussain, N.; Menon, V.B. Aducanumab therapy to Treat Alzheimers disease: A narrative review. Int. J. Alzheimers Dis., 2022, 2022, 1-10. doi: 10.1155/2022/9343514 PMID: 35308835
- Piazza, F.; Winblad, B. Amyloid-Related Imaging Abnormalities (ARIA) in immunotherapy trials for Alzheimers disease: Need for prognostic biomarkers? J. Alzheimers Dis., 2016, 52(2), 417-420. doi: 10.3233/JAD-160122 PMID: 27031492
- Lin, P.J.; Cohen, J.T.; Neumann, P.J. Preparing the health-care system to pay for new Alzheimers drugs. Alzheimers Dement., 2020, 16(11), 1568-1570. doi: 10.1002/alz.12155 PMID: 32808733
- Hameed, S.; Fuh, J.L.; Senanarong, V.; Ebenezer, E.G.M.; Looi, I.; Dominguez, J.C.; Park, K.W.; Karanam, A.K.; Simon, O. Role of fluid biomarkers and PET imaging in early diagnosis and its clinical implication in the management of Alzheimers disease. J. Alzheimers Dis. Rep., 2020, 4(1), 21-37. doi: 10.3233/ADR-190143 PMID: 32206755
- Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; Tomita, T.; Matsuzaki, K.; Ishii, K.; Ishii, K.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Masters, C.L.; Yanagisawa, K. High performance plasma amyloid-β biomarkers for Alzheimers disease. Nature, 2018, 554(7691), 249-254. doi: 10.1038/nature25456 PMID: 29420472
- Liu, K.Y.; Howard, R. Can we learn lessons from the FDAs approval of aducanumab? Nat. Rev. Neurol., 2021, 17(11), 715-722. doi: 10.1038/s41582-021-00557-x PMID: 34535787
- Ferreira, S.T.; Lourenco, M.V.; Oliveira, M.M.; De Felice, F.G. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front. Cell. Neurosci., 2015, 9, 191. doi: 10.3389/fncel.2015.00191 PMID: 26074767
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimers disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608. doi: 10.15252/emmm.201606210 PMID: 27025652
- Rajasekhar, K.; Govindaraju, T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimers disease. RSC Advances, 2018, 8(42), 23780-23804. doi: 10.1039/C8RA03620A PMID: 35540246
- Dunstan, R.; Bussiere, T.; Fahrer, D.; Quigley, C.; Zhang, X.; Themeles, M.; Engber, T.; Rhodes, K.; Arastu, M.; Li, M. P4-005: Quantitation of beta-amyloid in transgenic mice using whole slide digital imaging and image analysis software. Alzheimers Dement., 2011, 7(4S_Part_20), S700. doi: 10.1016/j.jalz.2011.05.2024
- Reiss, A.B.; Arain, H.A.; Stecker, M.M.; Siegart, N.M.; Kasselman, L.J. Amyloid toxicity in Alzheimers disease. Rev. Neurosci., 2018, 29(6), 613-627. doi: 10.1515/revneuro-2017-0063 PMID: 29447116
- Salazar, S.V.; Strittmatter, S.M. Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimers disease. Biochem. Biophys. Res. Commun., 2017, 483(4), 1143-1147. doi: 10.1016/j.bbrc.2016.09.062 PMID: 27639648
- Tian Hui Kwan, A.; Arfaie, S.; Therriault, J.; Rosa-Neto, P.; Gauthier, S. Lessons learnt from the second generation of anti-amyloid monoclonal antibodies clinical trials. Dement. Geriatr. Cogn. Disord., 2020, 49(4), 334-348. doi: 10.1159/000511506 PMID: 33321511
- Hefti, F.; Goure, W.F.; Jerecic, J.; Iverson, K.S.; Walicke, P.A.; Krafft, G.A. The case for soluble Aβ oligomers as a drug target in Alzheimers disease. Trends Pharmacol. Sci., 2013, 34(5), 261-266. doi: 10.1016/j.tips.2013.03.002 PMID: 23582316
- Cohen, S.I.A.; Linse, S.; Luheshi, L.M.; Hellstrand, E.; White, D.A.; Rajah, L.; Otzen, D.E.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9758-9763. doi: 10.1073/pnas.1218402110 PMID: 23703910
- Linse, S.; Scheidt, T.; Bernfur, K.; Vendruscolo, M.; Dobson, C.M.; Cohen, S.I.A.; Sileikis, E.; Lundqvist, M.; Qian, F.; OMalley, T.; Bussiere, T.; Weinreb, P.H.; Xu, C.K.; Meisl, G.; Devenish, S.R.A.; Knowles, T.P.J.; Hansson, O. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol., 2020, 27(12), 1125-1133. doi: 10.1038/s41594-020-0505-6 PMID: 32989305
- Dear, A.J.; Meisl, G.; Michaels, T.C.T.; Zimmermann, M.R.; Linse, S.; Knowles, T.P.J. The catalytic nature of protein aggregation. J. Chem. Phys., 2020, 152(4), 045101. doi: 10.1063/1.5133635 PMID: 32007046
- Arosio, P.; Knowles, T.P.J.; Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys., 2015, 17(12), 7606-7618. doi: 10.1039/C4CP05563B PMID: 25719972
- Avgerinos, K.I.; Ferrucci, L.; Kapogiannis, D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimers disease. Ageing Res. Rev., 2021, 68, 101339. doi: 10.1016/j.arr.2021.101339 PMID: 33831607
- Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res. Ther., 2021, 13(1), 98. doi: 10.1186/s13195-021-00838-z PMID: 33971962
- Howard, R.; Liu, K.Y. Questions EMERGE as Biogen claims aducanumab turnaround. Nat. Rev. Neurol., 2020, 16(2), 63-64. doi: 10.1038/s41582-019-0295-9 PMID: 31784690
- Mo, J.J.; Li, J.; Yang, Z.; Liu, Z.; Feng, J.S. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimers disease: A systematic review and network meta-analysis. Ann. Clin. Transl. Neurol., 2017, 4(12), 931-942. doi: 10.1002/acn3.469 PMID: 29296624
- Gamage, K.K.; Kumar, S. Aducanumab therapy ameliorates calcium overload in a mouse model of Alzheimers disease. J. Neurosci., 2017, 37(17), 4430-4432. doi: 10.1523/JNEUROSCI.0420-17.2017 PMID: 28446659
- Kastanenka, K.V.; Bussiere, T.; Shakerdge, N.; Qian, F.; Weinreb, P.H.; Rhodes, K.; Bacskai, B.J. Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 mice. J. Neurosci., 2016, 36(50), 12549-12558. doi: 10.1523/JNEUROSCI.2080-16.2016 PMID: 27810931
- Kuller, L.H.; Lopez, O.L. ENGAGE and EMERGE: Truth and consequences? Alzheimers Dement., 2021, 17(4), 692-695. doi: 10.1002/alz.12286 PMID: 33656288
- Study, the first real-world observational phase 4 study in Alzheimers disease at AAIC 2021. 2021. Available From: https://www.neurologylive.com/view/aducanumab-phase-4-real-world-observational-study-announced
- Padda, I.S.; Parmar, M. Aducanumab; StatPearls Publishing.: Florida, 2022.
- Knopman, D.S.; Jones, D.T.; Greicius, M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement., 2021, 17(4), 696-701. doi: 10.1002/alz.12213 PMID: 33135381
Supplementary files
