Splitting of a strip consisting of two identical orthotropic half-strips with isotropy axes symmetrically inclined to the interface
- Authors: Ustinov K.B.1, Borisova N.L.2
-
Affiliations:
- A.Yu. Ishlinsky Institute for problem in Mechanics RAS
- Federal State Educational Institution of Higher Education “Prince Alexander Nevsky Military University” of the Ministry of Defense of the Russian Federation
- Issue: No 5 (2024)
- Pages: 235–256
- Section: Articles
- URL: https://jdigitaldiagnostics.com/1026-3519/article/view/672999
- DOI: https://doi.org/10.31857/S1026351924050132
- EDN: https://elibrary.ru/TZNXAB
- ID: 672999
Cite item
Abstract
An exact analytical solution is obtained for the two-dimensional problem of a strip composed by two half-strips of equal thickness from the same linearly elastic orthotropic material with the main axes of the elasticity tensor symmetrically inclined to the interface and a central semi-infinite crack running along the interface. A self-balanced system of loads is assumed to be applied sufficiently far from the crack tip. For four independent active loading modes, expressions for stress intensity factors are found in the form of combinations of elementary functions or single integrals of combinations of elementary functions depending on three independent parameters.
Full Text

About the authors
K. B. Ustinov
A.Yu. Ishlinsky Institute for problem in Mechanics RAS
Author for correspondence.
Email: ustinov@ipmnet.ru
Russian Federation, Moscow
N. L. Borisova
Federal State Educational Institution of Higher Education “Prince Alexander Nevsky Military University” of the Ministry of Defense of the Russian Federation
Email: nbolo@yandex.ru
Russian Federation, Moscow
References
- Obreimoff J.W. The splitting strength of mica // Proc. R. Soc. A Math. Phys. Eng. Sci. 1930. 127. P. 290–297.
- Zlatin A.N., Khrapkov A.A. A Semi-Infinite Crack Parallel to the Boundary of the Elastic Half-Plane // Sov. Phys. Dokl. 1986. 31, P. 1009–1010.
- Ustinov K.B. On separation of a layer from the half-plane: elastic fixation conditions for a plate equivalent to the layer // Mech. Solids. 2015. 50 (1). P. 62–80. https://doi.org/10.3103/S0025654415010070
- Dundurs J. Edge-bonded dissimilar orthogonal elastic wedges under normal andshear loading // J. Appl. Mech. Trans. ASME. 1969. 36. N. 3. P. 650–651. https://doi.org/10.1115/1.3564739
- Entov V., Salganik R. On beam approximation in crack theory // Izv. AN SSSR. Mehanika 1965. 5, P. 95–102 (In Russian)
- Fichter W. The stress intensity factor for the double cantilever beam // Int. J. Fract. 1983. 22 (2). P. 133–143. https://doi.org/10.1007/BF00942719
- Foote R., Buchwald V. An exact solution for the stress intensity factor for a double cantilever beam // Int. J. Fract. 1985. 29 (3). P. 125–134. https://doi.org/10.1007/BF00034313
- Khrapkov A. Winer-Hopf Method in Mixed Elasticity Theory Problems. B.E.Vedeneev VNIIG Publishing House. 2001. 143 p.
- Ustinov K.B. On semi-infinite interface crack in bi-material elastic layer // European Journal of Mechanics – A/Solids. 2019. V. 75. N. 3. P. 56–69. https://doi.org/10.1016/j.euromechsol.2019.01.013
- Suo Z., Hutchinson J.W. Interface crack between two elastic layers // Int. J. Fract. 1990. 43. P. 1–18. https://doi.org/10.1007/BF00018123
- Hutchinson J.W., Suo Z. Mixed Mode Cracking in Layered Materials. Advances in Applied Mechanics edited by J. W. Hutchinson and T. Y. Wu. 1992. 29. P. 63–191. https://doi.org/10.1016/S0065-2156(08)70164-9
- Begley M.R, Hutchinson J.W. The Mechanics and Reliability of Films, Multilayers and Coatings. Cambridge University Press, 2017. P. 106–118. https://doi.org/10.1017/9781316443606.007
- Li S., Wang J., Thouless M.D. The effects of shear on delamination in layered materials // J. Mech. Phys. of Solids. 2004. 52 (1). P. 193–214. https://doi.org/10.1016/S0022-5096(03)00070-X
- Andrews M.G., Massabò R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Eng. Fract. Mech. 2007. 74. P. 2700–2720. https://doi.org/10.1016/j.engfracmech.2007.01.013
- Thouless M.D., Shear Forces, Root Rotations, Phase Angles and Delamination of Layered Materials // Eng. Fract. Mech. 2018. 191. P. 153–167. https://doi.org/10.1016/j.engfracmech.2018.01.033
- Suo Z. Delamination specimens for orthotropic materials // J. Appl. Mech. 1990 V. 57. P. 627–634. https://doi.org/10.1115/1.2897068.
- Bao G., Ho S., Suo Z., Fan B. The role of material orthotropy in fracture specimens for composites // Int. J, Sol. Struct. 1992. 29 ( 9). P. 1105–1116. https://doi.org/10.1016/0020-7683(92)90138-j
- Massabò R., Brandinelli L., Cox B.N. Mode I weight functions for an orthotropic double cantilever beam // Int. J. Eng. Sci. 2003. 41. P. 1497–1518. https://doi.org/10.1016/S0020-7225(03)00029-6
- Brandinelli L, Massabò R. Mode II weight functions for isotropic and orthotropic double cantilever beams // Int. J. Fract. 2006. 139. P. 1–25. https://doi.org/10.1007/s10704-006-6358-0.
- Georgiadis H.G., Papadopoulos G.A. Elastostatics of the orthotropic double-cantilever-beam fracture specimen // J. Appl. Math. Phys. (ZAMP) 1990. 41. P. 889–899. https://doi.org/10.1007/BF00945841
- Ustinov K., Massabò R., Lisovenko D. Orthotropic strip with central semi-infininite crack under arbitrary loads applied far apart from the crack tip. Analytical solution // Eng. Failure Analysis, 2020. 100. P. 104410. doi: 10.1016/j.engfailanal.2020.104410.
- Ustinov K.B., Idrisov D.M. On delamination of bi-layers composed by orthotropic materials: exact analytical solutions for some particular cases // ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2020. 101. Is 4. e202000239. doi: 10.1002/zamm.20200023
- Wang T.C., Shih, C.F. Suo Z. Crack extension and kinking in laminates and bicrystals // Int. J. Sol. Struct. 1992. 29. P. 327–344. doi: 10.1016/0020-7683(92)90203-6
- Suo Z., Bao G., Fan B., Wang T.C. Orthotropy rescaling and implications for fracture in composites // Int. J. Sol. Struct. 1991. 28(2). P. 235–248. doi: 10.1016/0020-7683(91)90208-W
- Grekov M.A. Two types of interface defects // J. Appl. Math. Mech. 2011. V. 75. № 4. P. 476–488. https://doi.org/ 10.1016/j.jappmathmech.2011.09.012
- Grekov M.A., Morozov N.F. Some modern methods in mechanics of cracks // Modern analysis and applications. 2009. V. 191. P. 127–142. https://doi.org/10.1007/978-3-7643-9921-4_8
- Koiter W. On the diffusion of load from a stiffener into a sheet // Q. J. Mech. Appl. Math. 1955. V. 8. № 2. P. 164–178. https://doi.org/10.1093/qjmam/8.2.164
- Popov G. Bending of a semi-infinite plate resting on a linearly deformable foundation // J. Appl. Math. Mech. 1961. 25 (2). P. 502–520. doi: 10.1016/0021-8928(61)90082-x
- Alblas J., Kuypers W., On the diffusion of load from a stiffener into an infinite wedge-shaped plate // Appl. Sci. Res. 1966. 15 (1). P. 429–439. doi: 10.1007/BF00411576
- Salganik R., Ustinov K., Deformation problem for an elastically fixed plate modeling a coating partially delaminated from the substrate (plane strain) // Mech. Solid. 2012. 47(4). P. 415–425. doi: 10.3103/s0025654412040061
- Ustinov K. On shear separation of a thin strip from the half-plane // Mech. Solid. 2014. 49(6). P. 713–724. doi: 10.3103/s0025654414060132
- Ustinov K. On delamination of a stipe along the boundary between two elastic layers part 1, problem formulation, the case of normal crack // PNRPU Mech. Bull. 2015 (4), 226–245. doi: 10.15593/perm.mech/2015.4.13
- Ustinov K., On delamination of a strip along the boundary between two elastic layers. part 2, case of shear crack // PNRPU Mech. Bull. 2016 (2), 131–142. doi: 10.15593/perm.mech/ 2016.1.09
- Massabò R., Ustinov K., Barbieri L., Berggreen, C. Fracture Mechanics Solutions for Interfacial Cracks between Compressible Thin Layers and Substrates // Coatings. 2019. 9(3). P. 152. doi: 10.3390/coatings9030152
- Ustinov K.B., Massabò R. On elastic clamping boundary conditions in plate models describing detaching bilayers // Int. J. Sol. Struct. 2022. 248. P. 111600. doi: 10.1016/j.ijsolstr.2022.111600
- Lekhnitsky Theory of elasticity of an anisotropic elastic body 1963.
- Noble B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations. Physics Today. 12 (9). 1959. P. 50. doi: 10.1063/1.3060973
- Sih G.C., Paris P.C., Irwin G.R. On cracks in rectilinearly anisotropic bodies Int. J. Fract. Mech. 1965. 1(3). P. 189–203. doi: 10.1007/bf00186854
- Wang C., Shih C.F., Suo Z. Crack extension and kinking in laminates and bicrystals. Int. J. Sol. Struct. 1992. 29(3). P. 327–344. doi: 10.1016/0020-7683(92)90203-6
Supplementary files
