Non-semisimple degeneracy of Lamb waves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Anomalous guided waves appearing at a non-semisimple degeneracy of the fundamental matrix are observed and analysed in the framework of the Cauchy sextic formalism. The non-semisimple degeneracy condition is explicitly constructed for the most general case of Lamb waves propagating in a traction-free layer with arbitrary elastic anisotropy. A new type of dispersion equation and the corresponding dispersion solution are obtained. The connection with surface waves of the non-Rayleigh type is discussed.

Full Text

Restricted Access

About the authors

A. I. Karakozova

Moscow State University of Civil Engineering

Email: kuzn-sergey@yandex.ru
Russian Federation, Moscow

S. V. Kuznetsov

Ishlinski Institute for Problems in Mechanics

Author for correspondence.
Email: kuzn-sergey@yandex.ru
Russian Federation, Moscow

References

  1. Barnett D.M., Lothe J. Consideration of the existence of surface wave (Rayleigh wave) solutions in anisotropic elastic crystals // J. Phys. F: Metal Phys. 1974. V. 4. P. 671–686. https://doi.org/10.1088/0305-4608/4/5/009
  2. Chadwick P., Smith G.D. Foundations of the theory of surface waves in anisotropic elastic materials // Adv. Appl. Mech. 1977. V. 17. P. 303–376. https://doi.org/10.1016/s0065-2156(08)70223-0
  3. Ting T.C.T., Barnett D.M. Classification of surface waves in anisotropic elastic materials // Wave Motion, 1997. V. 26. P. 207–218. https://doi.org/10.1016/S0165-2125(97)00027-9
  4. Ting T.C.T. On extraordinary semisimple matrix N(v) for anisotropic elastic materials // Quart. Appl. Math. 1997. V. 55. P. 723–738.
  5. Wang Y.M., Ting T.C.T. The Stroh formalism for anisotropic materials that possess an almost extraordinary degenerate matrix N // Int. J. Solids Struct. 1997. V. 34. P. 401–413. https://doi.org/10.1016/S0020-7683(96)00024-8
  6. Clements D.L. A note on surface waves in anisotropic media // Acta Mech. 1985. V. 56. P. 31–40. https://doi.org/10.1007/BF01306022
  7. Kuznetsov S.V. “Forbidden” planes for Rayleigh waves // Quart. Appl. Math. 2002. V. 60. P. 87–97. https://doi.org/10.1090/qam/1878260
  8. Kuznetsov S.V. Surface waves of non-Rayleigh type // Quart. Appl. Math. 2003. V. 61. P. 575–582. https://doi.org/10.1090/qam/1999838
  9. Royer D., Dieulesaint E. Elastic Waves in Solids 1. Free and Guided Propagation, NY: Springer, 1996. 370 p.
  10. Musgrave M.J.P. On the propagation of elastic waves in aeolotropic media. I. General principles // Proc. R. Soc. Lond. A. 1954. V. 226. P. 339–355. https://doi.org/10.1098/rspa.1954.0258
  11. Buchwald V.T. Rayleigh waves in transversely isotropic media // Quart. J. Mech. Appl. Math. 1954. V. 14. P. 293–317. https://doi.org/10.1093/qjmam/14.3.293
  12. Synge J.L. Elastic waves in anisotropic media // J. Math. Phys. 1956. V. 35. P. 323–334. https://doi.org/10.1002/SAPM1956351323
  13. Lim T.C., Farnell G.W. Search for forbidden directions of elastic surface-wave propagation in anisotropic crystals // J. Appl. Phys. 1968. V. 39. P. 4319–4325. https://doi.org/10.1016/j.jappmathmech.2006.03.004
  14. Lim T.C., Farnell G.W. Character of pseudo surface waves on anisotropic crystals // J. Acoust. Soc. Amer. 1969. V. 45. P. 845–851. https://doi.org/10.1121/1.1911556
  15. Farnell G.W. Properties of elastic surface waves // Phys. Acoust. 1970. V. 6. P. 109–166. https://doi.org/B978-0-12-395666-8.50017-8
  16. Hartman P. Ordinary Differential Equations. N.Y.: Wiley, 1964. 612 p.
  17. Golub G.H., Van Loan C.F. Matrix Computations (3rd ed.). Baltimore: Johns Hopkins University Press, 1996. 750 p.
  18. Stroh A.N. Dislocations and cracks in anisotropic elasticity // Philos. Mag. 1958. V. 3. P. 625–646. https://doi.org/10.1080/14786435808565804
  19. Stroh A.N. Steady state problems in anisotropic elasticity // J. Math. Phys. 1962. V. 41. P. 77–103.
  20. Mase G.T. Rayleigh wave speeds in transversely isotropic materials // J. Acoust. Soc. Am. 1987. V. 81. № 5. P. 1441–1446.
  21. Wu K.C. Generalization of the Stroh formalism to 3-dimensional anisotropic elasticity // J. Elast. 1998. V. 51. P. 213–225. https://doi.org/10.1023/A:1007523219357
  22. Hwu C. Stroh-like formalism for the coupled stretching-bending analysis for composite laminates // Int. J. Solids Struct. 2003. V. 40. P. 3681–3705. https://doi.org/10.1016/S0020-7683(03)00161-6
  23. Hwu C., Becker W. Stroh formalism for various types of materials and deformations // J. Mech. 2022. V. 38. P. 433–444. https://doi.org/10.1093/jom/ufac031
  24. Fu Y.B. Hamiltonian interpretation of the Stroh formalism in anisotropic elasticity // Proc. Roy. Soc. A. 2007. V. 463. P. 3073–3087. https://doi.org/10.1098/rspa.2007.0093
  25. Edmondson R.T., Fu Y.B. Stroh formulation for a generally constrained and pre-stressed elastic material // Int. J. Non-Linear Mech. 2009. V. 44. P. 530–537. https://doi.org/10.1016/j.ijnonlinmec.2008.11.001
  26. Kuznetsov S.V. Abnormal dispersion of flexural Lamb waves in functionally graded plates // Z. Angew. Math. Phys. 2019. V. 70. Paper 89. https://doi.org/10.1007/s00033-019-1132-0
  27. Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
  28. Kuznetsov S.V. Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence // Waves Random Complex Media. 2021. V. 31. P. 1540–1549. https://doi.org/10.1080/17455030.2019.1683257
  29. Michalski K.A., Mosig J.R. The Sommerfeld half-space problem revisited: from radio frequencies and Zenneck waves to visible light and Fano modes // J. Electromagnetic Waves Appl. 2016. V. 30. P. 1–42. https://doi.org/10.1080/09205071.2015.1093964
  30. Shanin A.V., Korolkov A.I. Sommerfeld-type integrals for discrete diffraction problems // Wave Motion. 2020. V. 97. Paper 102606. https://doi.org/10.1016/j.wavemoti.2020.10260
  31. Barnett D.M., Lothe J. Free surface (Rayleigh) waves in anisotropic elastic half-spaces: The surface impedance method // Proc. R. Soc. Lond. A. 1985. V. 402. P. 135–152. https://doi.org/10.1098/rspa.1985.0111
  32. Tanuma K. Stroh Formalism and Rayleigh Waves. In: Stroh Formalism and Rayleigh Waves. Springer: Dordrecht, 2007.
  33. Wang L. Space of degeneracy in the Stroh eigensystem and surface waves in transversely isotropic elastic media // Wave Motion. 2004. V. 40. P. 173–190.
  34. Ting T.C.T. An explicit secular equation for surface waves in an elastic material of general anisotropy // Q. J. Mech. Appl. Math. 2002. V. 55. P. 297–311. https://doi.org/10.1016/j.wavemoti.2004.03.001
  35. Djeran-Maigre I., Kuznetsov S.V. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys. 2014. V. 60. P. 200–207. https://doi.org/10.1134/S106377101402002X
  36. Pease III M.C., Methods of Matrix Algebra, London: Academic Press, 1965. 424 p.
  37. Habgood K., Arel I. A condensation-based application of Cramer’s rule for solving large-scale linear systems // J. Discrete Algorithms. 2012. V. 10. P. 98–109.
  38. Goldstein R.V., Kuznetsov S.V. Long-wave asymptotics of Lamb waves // Mech. Solids. 2018. V. 52. P. 700–707. https://doi.org/10.3103/S0025654417060097
  39. Ilyashenko A.V. et al. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russian Journal of Nondestructive Testing. 2017. V. 53(4). P. 243–259. https://doi.org/10.1134/S1061830917040039
  40. Li S. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // European Journal of Environmental and Civil Engineering. 2020. V. 24(14). P. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
  41. Li S. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Computers and Geotechnics. 2021. V. 131. Article 103808. https://doi.org/10.1080/19648189.2018.1506826

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Half-space; n is the wave vector; ν is the unit normal to the free boundary

Download (28KB)
3. Fig. 2. Homogeneous anisotropic layer with free boundaries of thickness 2h

Download (36KB)

Copyright (c) 2024 Russian Academy of Sciences