On one estimate of the critical value of the J-integral under normal compression around a crack-like defect in a thin adhesive layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

On the basis of one- and two-parameter failure criteria of mixed mode loading of I+II crack-like defect of adhesive layer, the critical value of J-integral under normal compression is estimated. The additive decomposition of the J-integral into energy densities and consideration of the sign of hydrostatic pressure are assumed to be valid. It is shown that when the critical value of the J-integral of mode II exceeds significantly the critical value of the J-integral at normal rupture, the critical value of the J-integral at normal compression is much inferior to the analogous characteristic at compression.

About the authors

V. V. Glagolev

Tula State University

Email: vadim@tsu.tula.ru
Tula, Russia

A. I. Lutkhov

Tula State University

Tula, Russia

References

  1. Bombolakis E.G. Photoelastic investigation of brittle crack growth within a field of uniaxial compression // Tectonophysics. 1964. V. 1. № 4. P. 343–351. https://doi.org/10.1016/0040-1951(64)90021-6
  2. Brace W.F., Bombolakis E.G. A note of brittle crack growth in compression // J. Geophys. Res. 1963. V. 68. № 12. P. 3709–3713. https://doi.org/10.1029/jz068i012p03709
  3. Гольдштейн Р.В., Осипенко Н.М. О разрушении при сжатии // Физическая мезомеханика. 2018. V. 21. № 3. С. 86–102.
  4. Гольдштейн Р.В., Осипенко Н.М. Модель хрупкого разрушения пористых материалов при сжатии // Математическое моделирование систем и процессов. 2009. № 17. С. 47–57.
  5. Kataokaa M., Eqlima Mahdavib E., Funatsuc T., Takeharad T., Obarae Y., Fukuia K., Hashiba K. Estimation of mode I fracture toughness of rock by semi-circular bend test under confining pressure condition // Procedia Engineering. 2017. V. 191. P. 886–893. https://doi.org/10.1016/j.proeng.2017.05.258
  6. Huang J., Hua W., Li D., Chen X., You X., Dong S., Li J. Effect of confining pressure on the compression-shear fracture properties of sandstone // Theoretical and Applied Fracture Mechanics. 2023. V. 124. 103763. https://doi.org/10.1016/j.tafmec.2023.103763
  7. Selyutina N.S., Igusheva L.A., Petrov Y.V. The role of the hydrostatic pressure under dynamic fracture of rocks // Materials Physics and Mechanics. 2024. V. 52. № 3. P. 108–120. https://doi.org/10.18149/MPM.5232024_11
  8. Okubo S., Nishimatsu Y., He C., Chu S.Y. Loading rate dependency of uniaxial compressive strength of rock under water-saturated condition // J. Society Materials Science. 1992. V. 41. № 463. P. 403–409. https://doi.org/10.2472/jsms.41.403
  9. Черепанов Г.П. Механика разрушения композиционных материалов. М.: Наука, 1983. 296 с.
  10. Cherepanov G.P. Some new applications of the invariant integrals of mechanics // J. Appl. Math. Mech. 2012. V. 76. № 5. P. 519–536. https://doi.org/10.1016/j.jappmathmech.2012.11.014
  11. Rice J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks // ASME J. Appl. Mech. 1968. V. 35. № 2. P. 379–386. https://doi.org/10.1115/1.3601206
  12. Santos M.A.S., Campilho R.D.S.G. Mixed-mode fracture analysis of composite bonded joints considering adhesives of different ductility // Int. J. Fract. 2017. V. 207. P. 55–71. https://doi.org/10.1007/s10704-017-0219-x
  13. Dionisio J.M.M., Ramalho L.D.C., Sanchez-Arce I.J., Campilho R.D.S.G., Belinha J. Fracture mechanics approach to stress singularity in adhesive joints // Int. J. Fract. 2021. V. 232. P. 77–91. https://doi.org/10.1007/s10704-021-00594-z
  14. Glagolev V.V., Lutkhov A.I. On the criterion for the strength of overlapped plate joints // Mechanics of Solids. 2024. V. 59. № 3. P. 1259–1265. https://doi.org/10.1134/S0025654424602933
  15. ANSYS. User's Guide. Release 11.0. Pennsylvania. USA: ANSYS Inc, 2006.
  16. Ismail A.E., Jamian S., Kamarudin K., Nor M.K.M., Ibrahim M.N., Choiron M.A. An overview of fracture mechanics with ANSYS // Int. J. Integr. Eng. 2018. V. 10. № 5. P. 59–67. https://doi.org/10.30880/ijie.2018.10.05.010
  17. Bombolakis E.G. Photoelastic investigation of brittle crack growth within a field of uniaxial compression // Tectonophysics. 1964. V. 1. № 4. P. 343–351. https://doi.org/10.1016/0040-1951(64)90021-6
  18. Brace W.F., Bombolakis E.G. A note of brittle crack growth in compression // J. Geophys. Res. 1963. V. 68. № 12. P. 3709–3713. https://doi.org/10.1029/jz068i012p03709
  19. Goldstein R.V., Osipenko N.M. On destruction during compression // Physical mesomechanics. 2018. V. 21. № 3. P. 86–102.
  20. Goldstein R.V., Osipenko N.M. A model of brittle fracture of porous materials under compression // Mathematical modeling of systems and processes. 2009. № 17. P. 47–57.
  21. Kataokaa M., Eqlima Mahdavib E., Funatsuc T., Takeharad T., Obarae Y., Fukuia K., Hashiba K. Estimation of mode I fracture toughness of rock by semi-circular bend test under confining pressure condition // Procedia Engineering. 2017. V. 191. P. 886–893. https://doi.org/10.1016/j.proeng.2017.05.258
  22. Huang J., Hua W., Li D., Chen X., You X., Dong S., Li J. Effect of confining pressure on the compression-shear fracture properties of sandstone // Theoretical and Applied Fracture Mechanics. 2023. V. 124. 103763. https://doi.org/10.1016/j.tafmec.2023.103763
  23. Selyutina N.S., Igusheva L.A., Petrov Y.V. The role of the hydrostatic pressure under dynamic fracture of rocks // Materials Physics and Mechanics. 2024. V. 52. № 3. P. 108–120. https://doi.org/10.18149/MPM.5232024_11
  24. Okubo S., Nishimatsu Y., He C., Chu S.Y. Loading rate dependency of uniaxial compressive strength of rock under water-saturated condition // Journal of the Society of Materials Science. 1992. V. 41. № 463. P. 403–409. https://doi.org/10.2472/jsms.41.403
  25. Cherepanov G.P. Mechanics of destruction of composite materials. Moscow: Nauka, 1983. 296 p.
  26. Cherepanov G.P. Some new applications of the invariant integrals of mechanics // J. Appl. Math. Mech. 2012. V. 76. № 5. P. 519–536. https://doi.org/10.1016/j.jappmathmech.2012.11.014
  27. Rice J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks // ASME J. Appl. Mech. 1968. V. 35. № 2. P. 379–386. https://doi.org/10.1115/1.3601206
  28. Santos M.A.S., Campilho R.D.S.G. Mixed-mode fracture analysis of composite bonded joints considering adhesives of different ductility // Int. J. Fract. 2017. V. 207. P. 55–71. https://doi.org/10.1007/s10704-017-0219-x
  29. Dionisio J.M.M., Ramalho L.D.C., Sanchez-Arce I.J., Campilho R.D.S.G., Belinha J. Fracture mechanics approach to stress singularity in adhesive joints // Int. J. Fract. 2021. V. 232. P. 77–91. https://doi.org/10.1007/s10704-021-00594-z
  30. Glagolev V.V., Lutkhov A.I. On the criterion for the strength of overlapped plate joints // Mechanics of Solids. 2024. V. 59. № 3. P. 1259–1265. https://doi.org/10.1134/S0025654424602933
  31. ANSYS. User’s Guide. Release 11.0. Pennsylvania. USA: ANSYS Inc, 2006.
  32. Ismail A.E., Jamian S., Kamarudin K., Nor M.K.M., Ibrahim M.N., Choiron M.A. An overview of fracture mechanics with ANSYS // Int. J. Integr. Eng. 2018. V. 10. № 5. P. 59–67. https://doi.org/10.30880/ijie.2018.10.05.010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences