Biomechanical Modeling of Osteotomies of the First Metatarsal Bone in Normal and Osteoporotic Conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Hallux valgus is a widespread pathology. Osteotomy of the first metatarsal bone is the gold standard for its treatment. The success of this surgical intervention depends, among other factors, on the stability of the “bone-fixation” system. Previous studies assessing the biomechanical properties of various first metatarsal osteotomies have examined the influence of osteotomy type, degree of fragment displacement, as well as the number and positioning of screws. In these studies, the biomechanical properties of bone tissue corresponded to normal values of conventionally healthy patients. Older patients are characterized by a high prevalence of osteoporosis. This disease manifests in reduced mineral density and mechanical properties of bone. The effect of osteoporosis on the biomechanical parameters of first metatarsal osteotomy models has not been previously studied. The aim of this work was to evaluate the stability of first metatarsal osteotomies under normal bone density and osteoporotic conditions, as well as to assess the robustness of biomechanical models of the most common osteotomy types to minor variations in screw positioning and bone-cutting plane geometry. For this purpose, 36 biomechanical models of scarf and chevron osteotomies were created, varying screw placement, bone-cutting plane geometry, cortical thickness, and elastic modulus. Finite element analysis was used to assess the stress-strain state of the osteotomy models. Model validation was performed based on natural cantilever bending tests of first metatarsal osteotomies in universal testing machine. The study demonstrated the robustness of scarf and chevron osteotomy models to minor changes in geometric parameters. Chevron osteotomy proved more stable than scarf. Additionally, scarf osteotomy generated significantly higher bone stresses compared to chevron. It was found that even under osteoporotic conditions, both osteotomy types can provide sufficient stability and strength in terms of screw breakage and bone tissue damage.

About the authors

K. A. Maryankin

Saratov National Research State University named after N.G. Chernyshevsky

Saratov, Russia

I. M. Magomedov

Saratov National Research State University named after N.G. Chernyshevsky

Saratov, Russia

L. V. Bessonov

Saratov National Research State University named after N.G. Chernyshevsky

Saratov, Russia

A. V. Dol

Saratov National Research State University named after N.G. Chernyshevsky

Saratov, Russia

S. I. Kireev

Saratov National Research State University named after N.G. Chernyshevsky

Saratov, Russia

D. V. Ivanov

Saratov National Research State University named after N.G. Chernyshevsky

Email: ivanovdv.84@yandex.ru
Saratov, Russia

References

  1. Favre P., Farine M., Snedeker J.G., Maquieira G.J., Espinosa N. Biomechanical consequences of first metatarsal osteotomy in treating hallux valgus // Clinical Biomechanics. 2010. V. 19. № 7. P. 721–727. https://doi.org/10.1016/j.clinbiomech.2010.05.002
  2. Полиенко А.В., Иванов Д.В., Киреев С.И., Бессонов Л.В., Мулдашева А.М., Оленко Е.С. Численный анализ напряженно-деформированного состояния остеотомий первой плюсневой кости // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023. Т. 23. № 4. С. 496–511. https://doi.org/10.18500/1816-9791-2023-23-4-496-511
  3. Голядкина А.А., Полиенко А.В., Киреев С.И., Курманов А.Г., Киреев В.С. Анализ биомеханических параметров остеотомии первой плюсневой кости // Российский журнал биомеханики. 2019. Т. 23. № 3. С. 400–410. https://doi.org/10.15593/RZhBiomeh/2019.3.06
  4. Li Y., Wang Y., Tang K., Tao X. Modified scarf osteotomy for hallux valgus: From a finite element model to clinical results // J. Orthop. Surg. 2022. V. 30. № 3. 10225536221143816. https://doi.org/10.1177/10225536221143816
  5. Shih K.S., Hsu C.C., Huang G.T. Biomechanical investigation of hallux valgus deformity treated with different osteotomy methods and Kirschner wire fixation strategies using the finite element method // Bioengineering (Basel). 2023. V. 10. № 4. P. 499. https://doi.org/10.3390/bioengineering10040499
  6. Xie Q., Li X., Wang P. Three-dimensional finite element analysis of biomechanics of osteotomy ends with three different fixation methods after hallux valgus minimally invasive osteotomy // J. Orthop. Surg. 2023. V. 31. № 2. 10225536231175235. https://doi.org/10.1177/10225536231175235
  7. Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical Comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. P. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
  8. Esses S.I., McGuire R., Jenkins J., Finkelstein J., Woodard E., Watters W.C. III et al. The treatment of symptomatic osteoporotic spinal compression fractures // Am. Acad. Orthop. Surg. 2011. V. 19. № 3. P. 176–182. https://doi.org/10.2106/JBJS.9320ebo
  9. Kang S., Park C.H., Jung H., Lee S., Min Y.S., Kim C.H. et al. Analysis of the physiological load on lumbar vertebrae in patients with osteoporosis: a finite-element study // Sci Rep. 2022. V. 12. № 1. P. 11001. https://doi.org/10.1038/s41598-022-15241-3
  10. Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis // Osteoporos Int. 2003. V. 14. P. 2–8. https://doi.org/10.1007/s00198-002-1340-9
  11. Zhang Y., Awrejcewicz J., Szymanowska O., Shen S., Zhao X., Baker J.S., Gu Y. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis // Comput. Biol. Med. 2018. V. 97. P. 1–7. https://doi.org/10.1016/j.compbiomed.2018.04.010
  12. Иванов Д.В., Доль А.В., Бессонов Л.В., Киреев С.И., Гуляева А.О. Методика механических испытаний при консольном нагружении плюсневых костей стопы // Российский журнал биомеханики. 2023. Т. 27. № 4. С. 84–92. https://doi.org/10.15593/RZhBiomeh/2023.4.06
  13. Deenik A.R., Pilot P., Brandt S.E., van Mameren H., Geesink R.G., Draijer W.F. Scarf versus chevron osteotomy in hallux valgus: a randomized controlled trial in 96 patients // Foot Ankle Int. 2007. V. 28. № 5. P. 537–541. https://doi.org/10.3113/FAI.2007.0537
  14. Ma Q., Liang X., Lu J. Chevron osteotomy versus scarf osteotomy for hallux valgus correction: A meta-analysis // Foot Ankle Surg. 2019. V. 25. № 6. P. 755–760. https://doi.org/10.1016/j.fas.2018.09.003
  15. Sun X., Guo Z., Cao X., Xiong B., Pan Y., Sun W., Bai Z. Stability of osteotomy in minimally invasive hallux valgus surgery with “8” shaped bandage during gait: a finite element analysis // Front. Bioeng. Biotechnol. 2024. V. 12. P. 1415617. https://doi.org/10.3389/fbioe.2024.1415617
  16. Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. P. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
  17. Havaldar R., Pilli S.C., Putti B.B. Insights into the effects of tensile and compressive loadings on human femur bone // Adv. Biomed. Res. 2014. V. 3. № 1. P. 101. https://doi.org/10.4103/2277-9175.129375
  18. Иванов Д.В. Биомеханическая поддержка решения врача при выборе варианта лечения на основе количественных критериев оценки успешности // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2022. Т. 22. № 1. С. 62–89. https://doi.org/10.18500/1816-9791-2022-22-1-62-89
  19. Гуляева А.О., Фалькович А.С., Киреев С.И., Терин Д.В., Магомедов И.М. Исследование связи между подошвенным давлением и тонусом икроножной мышцы. Разработка и апробация нового экспериментального стенда // Российский журнал биомеханики. 2023. Т. 27. № 4. С. 127–137. https://doi.org/10.15593/RZhBiomeh/2023.4.10
  20. Favre P., Farine M., Snedeker J.G., Maquieira G.J., Espinosa N. Biomechanical consequences of first metatarsal osteotomy in treating hallux valgus // Clinical Biomechanics. 2010. V. 25. № 7. P. 721–727. https://doi.org/10.1016/j.clinbiomech.2010.05.002
  21. Polienko A.V., Ivanov D.V., Kireev S.I., Bessonov L.V., Muldasheva A.M., Olenko E.S. Numerical analysis of stress-strain state in first metatarsal osteotomies // Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya: Matematika. Mekhanika. Informatika. 2023. V. 23. № 4. P. 496–511. https://doi.org/10.18500/1816-9791-2023-23-4-496-511
  22. Golyadkina A.A., Polienko A.V., Kireev S.I., Kurmanov A.G., Kireev V.S. Analysis of biomechanical parameters of first metatarsal osteotomy // Russian Journal of Biomechanics. 2019. V. 23. № 3. P. 400–410. https://doi.org/10.15593/RZhBiomeh/2019.3.06
  23. Li Y., Wang Y., Tang K., Tao X. Modified scarf osteotomy for hallux valgus: From a finite element model to clinical results // J. Orthop. Surg. 2022. V. 30. № 3. 10225536221143816. https://doi.org/10.1177/10225536221143816
  24. Shih K.S., Hsu C.C., Huang G.T. Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method // Bioengineering (Basel). 2023. V. 10. № 499. https://doi.org/10.3390/bioengineering10040499
  25. Xie Q., Li X., Wang P. Three-dimensional finite element analysis of biomechanics of osteotomy ends with three different fixation methods after hallux valgus minimally invasive osteotomy // J. Orthop. Surg. 2023. V. 31. № 2. 10225536231175235. https://doi.org/10.1177/10225536231175235
  26. Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical Comparison Study of Three Fixation Methods for Proximal Chevron Osteotomy of the First Metatarsal in Hallux Valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. P. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
  27. Esses S.I., McGuire R., Jenkins J., Finkelstein J., Woodard E., Watters W.C. III et al. The treatment of symptomatic osteoporotic spinal compression fractures // Am. Acad. Orthop. Surg. 2011. V. 19. № 3. P. 176–182. https://doi.org/10.2106/JBJS.9320ebo
  28. Kang S., Park C.H., Jung H., Lee S., Min Y.S., Kim C.H. et al. Analysis of the physiological load on lumbar vertebrae in patients with osteoporosis: a finite-element study // Sci Rep. 2022. V. 12. № 1. P. 11001. https://doi.org/10.1038/s41598-022-15241-3
  29. Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis // Osteoporos Int. 2003. V. 14. Suppl 3. P. S2–S8. https://doi.org/10.1007/s00198-002-1340-9
  30. Zhang Y., Awrejcewicz J., Szymanowska O., Shen S., Zhao X., Baker J.S., Gu Y. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis // Comput. Biol. Med. 2018. V. 97. P. 1–7. https://doi.org/10.1016/j.compbiomed.2018.04.010
  31. Ivanov D.V., Dol A.V., Bessonov L.V., Kireev S.I., Gulyaeva A.O. Methodology for mechanical testing of metatarsal bones under cantilever loading // Russian Journal of Biomechanics. 2023. V. 27. № 4. P. 84–92. https://doi.org/10.15593/RZhBiomeh/2023.4.06
  32. Deenik A.R., Pilot P., Brandt S.E., van Mameren H., Geesink R.G., Draijer W.F. Scarf versus chevron osteotomy in hallux valgus: a randomized controlled trial in 96 patients // Foot Ankle Int. 2007. V. 28. № 3. P. 537–541. https://doi.org/10.3113/FAI.2007.0537
  33. Ma Q., Liang X., Lu J. Chevron osteotomy versus scarf osteotomy for hallux valgus correction: A meta-analysis // Foot Ankle Surg. 2019. V. 25. № 6. P. 755–760. https://doi.org/10.1016/j.fas.2018.09.003
  34. Sun X., Guo Z., Cao X., Xiong B., Pan Y., Sun W., Bai Z. Stability of osteotomy in minimally invasive hallux valgus surgery with “8” shaped bandage during gait: a finite element analysis // Front. Bioeng. Biotechnol. 2024. V. 12. P. 1415617. https://doi.org/10.3389/fbioe.2024.1415617
  35. Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. P. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
  36. Havaldar R., Pilli S.C., Putti B.B. Insights into the effects of tensile and compressive loadings on human femur bone // Adv. Biomed. Res. 2014. V. 3. № 101. https://doi.org/10.4103/2277-9175.129375
  37. Ivanov D.V. Biomechanical support for clinical decision-making in treatment selection based on quantitative success criteria // Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya: Matematika. Mekhanika. Informatika. 2022. V. 22. № 1. P. 62–89. https://doi.org/10.18500/1816-9791-2022-22-1-62-89
  38. Gulyaeva A.O., Falkovich A.S., Kireev S.I., Terin D.V., Magomedov I.M. Study of the relationship between plantar pressure and calf muscle tone. Development and testing of a new experimental setup // Russian Journal of Biomechanics. 2023. V. 27. № 4. P. 127–137. https://doi.org/10.15593/RZhBiomeh/2023.4.10

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences