A COMPREHENSIVE APPROACH TO THE SEISMIC ANALYSIS AND DESIGN OF REINFORCED CONCRETE BUILDINGS AND STRUCTURES
- Authors: Mkrtychev O.V.1, Reshetov A.A.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University)
- Issue: No 5 (2025)
- Pages: 206-226
- Section: Articles
- URL: https://jdigitaldiagnostics.com/1026-3519/article/view/691682
- DOI: https://doi.org/10.31857/S1026351925050112
- EDN: https://elibrary.ru/bvqaof
- ID: 691682
Cite item
Abstract
This paper presents a modern comprehensive approach to the analysis and design of reinforced concrete buildings, taking into account soil-structure interaction (SSI) under seismic loading. As a case study, the approach was applied to the seismic analysis of a five-story reinforced concrete building. The external seismic impact was defined using a three-component accelerogram corresponding to a magnitude-9 earthquake. The interaction between the building and the soil foundation was implemented through an SSI interface (soil-structure interaction). To eliminate the influence of wave reflections from the boundaries of the finite soil domain, a perfectly matched layer (PML) was employed. The reinforced concrete structures were modeled using a method that combines solid elements for concrete with beam elements for reinforcement. The simulations were performed using distributed computing technology on a high-performance computing cluster. A study of the failure mechanisms of the structure was carried out. A comparative analysis was conducted between the input accelerogram at the free surface of the soil and the acceleration recorded at the building’s foundation slab. With appropriate adaptation and the use of high-performance computing systems, the proposed methodology can be applied in engineering practice to improve the reliability of seismic analysis of reinforced concrete buildings.
About the authors
O. V. Mkrtychev
Moscow State University of Civil Engineering (National Research University)
Email: mkrtychev@yandex.ru
Moscow, Russia
A. A. Reshetov
Moscow State University of Civil Engineering (National Research University)
Email: andrew331@bk.ru
Moscow, Russia
References
- Murray Y.D. User’s Manual for LS-DYNA Concrete. Material Model 159 // McLean. Report No. FHWA-HRT-05-062. Federal Highway Administration, 2007. 77 p.
- Jiang H., Zhao J. Calibration of the continuous surface cap model for concrete // Finite Elements in Analysis and Design. 2015. V. 97. P. 1–19. https://doi.org/10.1016/j.finel.2014.12.002
- Mkrtychev O.V., Sidorov D.S., Bulushev S.V. Comparative analysis of results from experimental and numerical studies on concrete strength // MATEC Web of Conferences. 2017. V. 117. P. 00123. https://doi.org/10.1051/matecconf/201711700123
- Wolf J.P. Dynamic soil–structure interaction // Englewood Cliffs, NJ: Prentice-Hall, 1985. 481 p.
- Тяпин А.Г. Учет взаимодействия сооружений с основанием при расчетах на сейсмические воздействия. М.: АСВ, 2014. 136 с.
- Basu U. Explicit finite element perfectly matched layer for transient three-dimensional elastic waves // Int. J. Numer. Methods Eng. 2009. V. 77. № 2. P. 151–176. https://doi.org/10.1002/nme.2397
- Mkrtychev O.V., Reshetov A.A. Modeling worst-case earthquake accelerograms for buildings and structures // Advances in Engineering Research. 2016. V. 72. P. 89–94. https://doi.org/10.2991/aece-16.2017.21
- Мкртычев О.В., Решетов А.А. Синтезирование наиболее неблагоприятных акселерограмм для линейной системы с конечным числом степеней свободы // Международный журнал по расчету гражданских и строительных конструкций. 2015. V. 11. № 3. P. 101–115.
- Salamon J., Harris D.W. Evaluation of Nonlinear Material Models in Concrete Dam Finite Element Analysis // Report DSO-2014-08. Colorado, 2014. P. 89.
- Borja, R.I., Sama K.M., Sanz P.F. On the numerical integration of three-invariant elastoplastic constitutive models // Computer Methods in Applied Mechanics and Engineering. 2003. V. 192. № 9–10. P. 1227–1258. https://doi.org/10.1016/S0045-7825(02)00620-5
- Krysl P., Bittnar Z. Parallel explicit finite element solid dynamics with domain decomposition and message passing: dual partitioning scalability // Computers & Structures. 2001. V. 79. № 3. P. 345–360.
- París J., Colominas I., Navarrina F., Casteleiro M. Parallel computing in topology optimization of structures with stress constraints // Computers & Structures. 2013. V. 125. P. 62–73. https://doi.org/10.1016/j.compstruc.2013.04.016
- Jin H., Jespersen D., Mehrotra P., Biswas R., Huang L., Chapman B. High performance computing using MPI and OpenMP on multi-core parallel systems // Parallel Computing. 2011. V. 37. № 9. P. 562–575. https://doi.org/10.1016/j.parco.2011.02.002
- Basu U., Chopra A. Perfectly matched layers for transient elastodynamics of unbounded domains // Int. J. Numer. Methods Eng. 2004. V. 59. № 8. P. 1039–1074. https://doi.org/10.1002/nme.896
- Cun Hu, Haixiao Liu, Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay // Comput. Geotech. 2014. V. 55. P. 27–41. https://doi.org/10.1016/j.compgeo.2013.07.012
- Бакалов В.П. Цифровое моделирование случайных процессов. М.: МАИ, 2001. 81 с.
- Мкртычев О.В., Джинчвелашвили Г.А., Бусалова М.С. Моделирование взаимодействия сооружения с основанием при расчете на землетрясение // Вестник МГСУ. 2013. № 12. C. 34–40.
- Ньюмарк Н., Розенблюэт Э. Основы сейсмостойкого строительства. М.: Стройиздат, 1980. 344 с.
- Murray Y.D. User’s Manual for LS-DYNA Concrete. Material Model 159 // McLean. Report No. FHWA-HRT-05-062. Federal Highway Administration, 2007. 77 p.
- Jiang H., Zhao J. Calibration of the continuous surface cap model for concrete // Finite Elements in Analysis and Design. 2015. V. 97. P. 1–19. https://doi.org/10.1016/j.finel.2014.12.002
- Mkrtychev O.V., Sidorov D.S., Bulushev S.V. Comparative analysis of results from experimental and numerical studies on concrete strength // MATEC Web of Conferences. 2017. V. 117. P. 00123. https://doi.org/10.1051/matecconf/201711700123
- Wolf J.P. Dynamic soil–structure interaction // Englewood Cliffs, NJ: Prentice-Hall, 1985. 481 p.
- Тяпин А.Г. Учет взаимодействия сооружений с основанием при расчетах на сейсмические воздействия. М.: АСВ, 2014. 136 с.
- Basu U. Explicit finite element perfectly matched layer for transient three-dimensional elastic waves // Int. J. Numer. Methods Eng. 2009. V. 77. № 2. P. 151–176. https://doi.org/10.1002/nme.2397
- Mkrtychev O.V., Reshetov A.A. Modeling worst-case earthquake accelerograms for buildings and structures // Advances in Engineering Research. 2016. V. 72. P. 89–94. https://doi.org/10.2991/aece-16.2017.21
- Мкртычев О.В., Решетов А.А. Синтезирование наиболее неблагоприятных акселерограмм для линейной системы с конечным числом степеней свободы // Международный журнал по расчету гражданских и строительных конструкций. 2015. V. 11. № 3. P. 101–115.
- Salamon J., Harris D.W. Evaluation of Nonlinear Material Models in Concrete Dam Finite Element Analysis // Report DSO-2014-08. Colorado, 2014. P. 89.
- Borja, R.I., Sama K.M., Sanz P.F. On the numerical integration of three-invariant elastoplastic constitutive models // Computer Methods in Applied Mechanics and Engineering. 2003. V. 192. № 9–10. P. 1227–1258. https://doi.org/10.1016/S0045-7825(02)00620-5
- Krysl P., Bittnar Z. Parallel explicit finite element solid dynamics with domain decomposition and message passing: dual partitioning scalability // Computers & Structures. 2001. V. 79. № 3. P. 345–360.
- París J., Colominas I., Navarrina F., Casteleiro M. Parallel computing in topology optimization of structures with stress constraints // Computers & Structures. 2013. V. 125. P. 62–73. https://doi.org/10.1016/j.compstruc.2013.04.016
- Jin H., Jespersen D., Mehrotra P., Biswas R., Huang L., Chapman B. High performance computing using MPI and OpenMP on multi-core parallel systems // Parallel Computing. 2011. V. 37. № 9. P. 562–575. https://doi.org/10.1016/j.parco.2011.02.002
- Basu U., Chopra A. Perfectly matched layers for transient elastodynamics of unbounded domains // Int. J. Numer. Methods Eng. 2004. V. 59. № 8. P. 1039–1074. https://doi.org/10.1002/nme.896
- Cun Hu, Haixiao Liu, Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay // Comput. Geotech. 2014. V. 55. P. 27–41. https://doi.org/10.1016/j.compgeo.2013.07.012
- Бакалов, В.П. Цифровое моделирование случайных процессов. М.: МАИ, 2001. 81 с.
- Мкртычев О.В., Джинчвелашвили Г.А., Бусалова М.С. Моделирование взаимодействия сооружения с основанием при расчете на землетрясение // Вестник МГСУ. 2013. № 12. C. 34–40.
- Ньюмарк Н., Розенблюэт Э. Основы сейсмостойкого строительства. М.: Стройиздат, 1980. 344 с.
Supplementary files
