Determination of the Ion—Solid Interaction Potential from the Experiment and Its Influence on the Profiles of Implanted Particles
- 作者: Zinoviev A.N.1, Babenko P.Y.1, Mikhailov V.S.1, Tensin D.S.1
-
隶属关系:
- Ioffe Institute of Physics and Technical Sciences
- 期: 编号 6 (2024)
- 页面: 38-43
- 栏目: Articles
- URL: https://jdigitaldiagnostics.com/1028-0960/article/view/664806
- DOI: https://doi.org/10.31857/S1028096024060059
- EDN: https://elibrary.ru/DVQGTR
- ID: 664806
如何引用文章
详细
Based on the analysis of the angular distributions of particles passing through thin gold films, the parameters of the potential that best describes the experiment are obtained. The resulting potential differs from the potential describing collisions in the gaseous phase by a noticeable change in the screening constant. The influence of the collision energy, the choice of potential, and the model of electron bremsstrahlung on the depth distribution of implanted particles is analyzed.
作者简介
A. Zinoviev
Ioffe Institute of Physics and Technical Sciences
编辑信件的主要联系方式.
Email: zinoviev@inprof.ioffe.ru
俄罗斯联邦, Saint Petersburg
P. Babenko
Ioffe Institute of Physics and Technical Sciences
Email: zinoviev@inprof.ioffe.ru
俄罗斯联邦, Saint Petersburg
V. Mikhailov
Ioffe Institute of Physics and Technical Sciences
Email: zinoviev@inprof.ioffe.ru
俄罗斯联邦, Saint Petersburg
D. Tensin
Ioffe Institute of Physics and Technical Sciences
Email: zinoviev@inprof.ioffe.ru
俄罗斯联邦, Saint Petersburg
参考
- Moliere G. // Z. Naturforsch. A 1947. V. 2. P. 133. https://doi.org./10.1515/zna-1947-0302
- Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Solids, the Stopping and Range of Ions in Matter, V. 1. New York: Pergamon, 1985, 321p.
- Lenz W. // Z. Phys. 1932. V. 77. P. 713. https://doi.org./10.1007/BF01342150
- Jensen H. // Z. Phys. 1932. V. 77. P. 722. https://doi.org./10.1007/BF01342151
- Wilson W.D., Haggmark L.G., Biersack J.P. // Phys. Rev. B 1977. V. 15. P. 2458. https://doi.org./10.1103/PhysRevB.15.2458
- Zinoviev A.N. // Nucl. Instrum. Methods Phys. Res., Sect. B 2011. V. 269. P. 829. https://doi.org./10.1016/j.nimb.2010.11.074
- Zinoviev A.N., Nordlund K. // Nucl. Instrum. Methods Phys. Res., Sect. B 2017. V. 406. P. 511. https://doi.org./10.1016/j.nimb.2017.03.047
- Meluzova D.S., Babenko P.Yu., Shergin A.P., Nordlund K., Zinoviev A.N. // Nucl. Instrum. Methods Phys. Res., Sect. B 2019. V. 460. P. 4. https://doi.org./10.1016/j.nimb.2019.03.037
- Zinoviev A.N., Babenko P.Yu., Nordlund K. // Nucl. Instrum. Methods Phys. Res., Sect. B 2021. V. 508. P. 10. https://doi.org./10.1016/j.nimb.2021.10.001
- Agrawal A., Mishra R., Ward L., Flores K.M., Windl W. // Modelling Simul. Mater. Sci. Eng. 2013. V. 21. P. 085001. https://doi.org./10.1088/0965-0393/21/8/085001
- Bjorkas C., Juslin N., Timko H., Vortler K., Nordlund K., Henriksson K., Erhart P. // J. Phys.: Condens. Matter 2009. V. 21. P. 445002. https://doi.org./10.1088/0953-8984/21/44/445002
- Marinica M-C., Ventelon L., Gilbert M.R., Proville L., Dudarev S.L., Marian J., Bencteux G., Willaime F. // J. Phys.: Condens. Matter 2013. V. 25. P. 395502. https://doi.org./10.1088/0953-8984/25/39/395502
- Bruckner B., Strapko T., Sortica M.A., Bauer P., Primetzhofer D. // Nucl. Instrum. Methods Phys. Res., Sect. B 2020. V. 470. P. 21. https://doi.org./10.1016/j.nimb.2020.02.018
- Бабенко П.Ю., Мелузова Д.С., Солоницына А.П., Шергин А.П., Зиновьев А.Н. // ЖЭТФ 2019. Т. 155. С. 612. https://doi.org./10.1134/S0044451019040047
- Бабенко П.Ю., Зиновьев А.Н., Тенсин Д.С. // ЖТФ. 2022. Т. 92. С. 1643. https://doi.org./10.21883/JTF.2022.11.53436.151-22
- NDS – Database. https://www-nds.iaea.org
- Blume R., Eckstein W., Verbeek H. // Nucl. Instr. Meth. 1980. V. 168. P. 57. https://doi.org./10.1016/0029-554X(80)91231-8
- Morita K., Akimune H., Suita T. // J. Phys. Soc. Japan 1968. V. 25. P. 1525. https://doi.org./10.1143/JPSJ.25.1525
- Archubi C.D., Eckardt J.C., Lantschner G.H., Arista N.R. // Phys. Rev. A 2006. V. 73. P. 042901. https://doi.org./10.1103/PhysRevA.73.042901
- Valdes J.E., Martínez-Tamayo G., Lantschner G.H., Eckardt J.C., Arista N.R. // Nucl. Instr. Meth. Phys. Res. B 1993. V. 73. P. 313. https://doi.org./10.1016/0168-583X(93)95744-P
- Markin S.N., Primetzhofer D., Prusa S., Brunmayr M., Kowarik G., Aumayr F., Bauer P. // Phys. Rev. B 2008. V. 78. P. 195122. https://doi.org./10.1103/PhysRevB.78.195122
- Fama M., Lantschner G.H., Eckardt J.C., Denton C.D., Arista N.R. // Nucl. Instr. Meth. Phys. Res. B 2000. V. 164-165. P. 241. https://doi.org./10.1016/S0168-583X(99)01086-1
- Andersen H.H., Csete A., Ichioka T., Knudsen H., Moller S.P., Uggerhoj U.I. // Nucl. Instr. Meth. Phys. Res. B 2002. V. 194. P. 217. https://doi.org./10.1016/S0168-583X(02)00692-4
- Зиновьев А.Н., Бабенко П.Ю. // ПЖЭТФ 2022. Т. 115. С. 603. https://doi.org./10.31857/S1234567822090105
- SRIM — The Stopping and Range of Ions in Matter — code. http://srim.org.
- Мелузова Д.С., Бабенко П.Ю., Шергин А.П., Зиновьев А.Н. // Поверхность 2019. В. 4. С. 74. https://doi.org./10.1134/S0207352819040127
- Бабенко П.Ю., Зиновьев А.Н., Михайлов В.С., Тенсин Д.С., Шергин А.П. // ПЖТФ. 2022. Т. 48. С. 10. https://doi.org./10.21883/PJTF.2022.14.52862.19231
- Firsov O.B. // Sov. Phys. JETP 1958. V. 7. P. 308.
补充文件
