Enhancing Spermatogenesis in Non-obstructive Azoospermia Through Mesenchymal Stem Cell Therapy22


Cite item

Full Text

Abstract

:Stem cells hold great promise as novel and encouraging therapeutic tools in the treatment of degenerative disorders due to their differentiation potential while maintaining the capability to self-renewal and their unlimited ability to divide and regenerate tissue. A variety of different types of stem cells can be used in cell therapy. Among these, mesenchymal stem cell (MSC) therapy has gradually established itself as a novel method for treating damaged tissues that need restoration and renewal. Male infertility is an important health challenge affecting approximately 8-12% of people around the world. This abnormality can be caused by primary, congenital, acquired, or idiopathic reasons. Men with no sperm in their semen have a condition called azoospermia, caused by non-obstructive (NOA) causes and post-testicular obstructive causes. Accumulating evidence has shown that various types of MSCs can differentiate into germ cells and improve spermatogenesis in the seminiferous tubules of animal models. In addition, recent studies in animal models have exhibited that extracellular vesicles derived from MSCs can stimulate the progression of spermatogenesis and germ cell regeneration in the recipient testes. In spite of the fact that various improvements have been made in the treatment of azoospermia disorder in animal models by MSC or their extracellular vesicles, no clinical trials have been carried out to test their therapeutic effect on the NOA. In this review, we summarize the potential of MSC transplantation for treating infertility caused by NOA.

About the authors

Ria Margiana

Andrology Program, Faculty of Medicine, Universitas Airlangga

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; Simpson, J.L.; van der Poel, S. The international glossary on infertility and fertility care, 2017. Fertil. Steril., 2017, 108(3), 393-406. doi: 10.1016/j.fertnstert.2017.06.005 PMID: 28760517
  2. Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol., 2015, 13(1), 37. doi: 10.1186/s12958-015-0032-1 PMID: 25928197
  3. Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem., 2018, 62, 2-10. doi: 10.1016/j.clinbiochem.2018.03.012 PMID: 29555319
  4. Carlsen, E.; Giwercman, A.; Keiding, N.; Skakkebaek, N.E. Evidence for decreasing quality of semen during past 50 years. BMJ, 1992, 305(6854), 609-613. doi: 10.1136/bmj.305.6854.609 PMID: 1393072
  5. Swan, S.H.; Elkin, E.P.; Fenster, L. The question of declining sperm density revisited: an analysis of 101 studies published 1934-1996. Environ. Health Perspect., 2000, 108(10), 961-966. doi: 10.1289/ehp.00108961 PMID: 11049816
  6. Mishra, P.; Negi, M.P.S.; Srivastava, M.; Singh, K.; Rajender, S. Decline in seminal quality in Indian men over the last 37 years. Reprod. Biol. Endocrinol., 2018, 16(1), 103. doi: 10.1186/s12958-018-0425-z PMID: 30352581
  7. Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update, 2017, 23(6), 646-659. doi: 10.1093/humupd/dmx022 PMID: 28981654
  8. Krausz, C. Male infertility: Pathogenesis and clinical diagnosis. Best Pract. Res. Clin. Endocrinol. Metab., 2011, 25(2), 271-285. doi: 10.1016/j.beem.2010.08.006 PMID: 21397198
  9. Zhankina, R.; Baghban, N.; Askarov, M.; Saipiyeva, D.; Ibragimov, A.; Kadirova, B.; Khoradmehr, A.; Nabipour, I.; Shirazi, R.; Zhanbyrbekuly, U.; Tamadon, A. Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: a systemic review. Stem Cell Res. Ther., 2021, 12(1), 229. doi: 10.1186/s13287-021-02295-9 PMID: 33823925
  10. Cai, Z.; Li, H. Congenital bilateral absence of the vas deferens. Front. Genet., 2022, 13, 775123. doi: 10.3389/fgene.2022.775123 PMID: 35222530
  11. Gao, G.; Fan, C.; Li, W.; Liang, R.; Wei, C.; Chen, X.; Yang, Y.; Zhong, Y.; Shao, Y.; Kong, Y.; Li, Z.; Zhu, X. Mesenchymal stem cells: Ideal seeds for treating diseases. Hum. Cell, 2021, 34(6), 1585-1600. doi: 10.1007/s13577-021-00578-0 PMID: 34272720
  12. Fukutake, M.; Ochiai, D.; Masuda, H.; Abe, Y.; Sato, Y.; Otani, T.; Sakai, S.; Aramaki-Hattori, N.; Shimoda, M.; Matsumoto, T.; Miyakoshi, K.; Kanai, Y.; Kishi, K.; Tanaka, M. Human amniotic fluid stem cells have a unique potential to accelerate cutaneous wound healing with reduced fibrotic scarring like a fetus. Hum. Cell, 2019, 32(1), 51-63. doi: 10.1007/s13577-018-0222-1 PMID: 30506493
  13. Gupta, A.; Kashte, S.; Gupta, M.; Rodriguez, H.C.; Gautam, S.S.; Kadam, S. Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective. Hum. Cell, 2020, 33(4), 907-918. doi: 10.1007/s13577-020-00407-w PMID: 32780299
  14. Yamada, A.; Yokoo, T.; Yokote, S.; Yamanaka, S.; Izuhara, L.; Katsuoka, Y.; Shimada, Y.; Shukuya, A.; Okano, H.J.; Ohashi, T.; Ida, H. Comparison of multipotency and molecular profile of MSCs between CKD and healthy rats. Hum. Cell, 2014, 27(2), 59-67. doi: 10.1007/s13577-013-0082-7 PMID: 24496821
  15. Liang, H.; Suo, H.; Wang, Z.; Feng, W. Progress in the treatment of osteoarthritis with umbilical cord stem cells. Hum. Cell, 2020, 33(3), 470-475. doi: 10.1007/s13577-020-00377-z PMID: 32447573
  16. Fei, X.; Cai, Y.; Lin, F.; Huang, Y.; Liu, T.; Liu, Y. Amniotic fluid mesenchymal stem cells repair mouse corneal cold injury by promoting mRNA N4-acetylcytidine modification and ETV4/JUN/CCND2 signal axis activation. Hum. Cell, 2021, 34(1), 86-98. doi: 10.1007/s13577-020-00442-7 PMID: 33010000
  17. Jovic, D.; Yu, Y.; Wang, D.; Wang, K.; Li, H.; Xu, F.; Liu, C.; Liu, J.; Luo, Y. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev. Rep., 2022, 18(5), 1525-1545. doi: 10.1007/s12015-022-10369-1 PMID: 35344199
  18. Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; Al-Gazally, M.E.; Mustafa, Y.F.; Siahmansouri, H. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther., 2022, 13(1), 366. doi: 10.1186/s13287-022-03054-0 PMID: 35902958
  19. Musiał-Wysocka, A.; Kot, M.; Majka, M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant., 2019, 28(7), 801-812. doi: 10.1177/0963689719837897 PMID: 31018669
  20. Xv, J.; Ming, Q.; Wang, X.; Zhang, W.; Li, Z.; Wang, S.; Li, Y.; Li, L. Mesenchymal stem cells moderate immune response of type 1 diabetes. Cell Tissue Res., 2017, 368(2), 239-248. doi: 10.1007/s00441-016-2499-2 PMID: 27726027
  21. Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther., 2022, 7(1), 92. doi: 10.1038/s41392-022-00932-0 PMID: 35314676
  22. Durairajanayagam, D. Lifestyle causes of male infertility. Arab J. Urol., 2018, 16(1), 10-20. doi: 10.1016/j.aju.2017.12.004 PMID: 29713532
  23. Wosnitzer, M.; Goldstein, M.; Hardy, M.P. Review of azoospermia. Spermatogenesis, 2014, 4(1), e28218. doi: 10.4161/spmg.28218 PMID: 25105055
  24. Kang, C.; Punjani, N.; Schlegel, P.N. Reproductive chances of men with azoospermia due to spermatogenic dysfunction. J. Clin. Med., 2021, 10(7), 1400. doi: 10.3390/jcm10071400 PMID: 33807489
  25. Tao, Y. Endocrine aberrations of human nonobstructive azoospermia. Asian J. Androl., 2022, 24(3), 274-286. doi: 10.4103/aja202181 PMID: 35042310
  26. Ring, J.; Welliver, C.; Parenteau, M.; Markwell, S.; Brannigan, R.E.; Köhler, T.S. The utility of sex hormone-binding globulin in hypogonadism and infertile males. J. Urol., 2017, 197(5), 1326-1331. doi: 10.1016/j.juro.2017.01.018 PMID: 28087298
  27. Gauthier-Fisher, A.; Kauffman, A.; Librach, C.L. Potential use of stem cells for fertility preservation. Andrology, 2020, 8(4), 862-878. doi: 10.1111/andr.12713 PMID: 31560823
  28. Vieira, M.; Bispo de Andrade, M.A.; Santana-Santos, E. Is testicular microdissection the only way to retrieve sperm for non-obstructive azoospermic men? Front Reprod Health., 2022, 4, 980824. doi: 10.3389/frph.2022.980824
  29. Esteves, S.C.; Ramasamy, R.; Colpi, G.M.; Carvalho, J.F.; Schlegel, P.N. Sperm retrieval rates by micro-TESE versus conventional TESE in men with non-obstructive azoospermia—the assumption of independence in effect sizes might lead to misleading conclusions. Hum. Reprod. Update, 2020, 26(4), 603-605. doi: 10.1093/humupd/dmaa006 PMID: 32436569
  30. Yalcin, I.; Berker, B.; Sukur, Y.E.; Kahraman, K.; Ates, C. Comparison of intracytoplasmic sperm injection with testicular spermatozoa success in infertile men with obstructive and non-obstructive azoospermia; a retrospective analysis. Hum. Fertil., 2017, 20(3), 186-191. doi: 10.1080/14647273.2016.1264632 PMID: 27931129
  31. Oses, R.J.; Zappacosta Villarroel, M.; Medel, P.; Garcia Ojeda, M.; Viola, J.; Valcarcel, A. TESE-ICSI in couples with non obstructive azoospermia: comparison between fresh or previously cryopreserved testicular sperm. Fertil. Steril., 2018, 110(4), e289. doi: 10.1016/j.fertnstert.2018.07.817
  32. Elena, E. AJ Friedenstein, founder of the mesenchymal stem cell concept. Cell. Ther. Transplant., 2009, 1(3), 35-38.
  33. Friedenstein, A.J.; Piatetzky-Shapiro, I.I.; Petrakova, K.V. Osteogenesis in transplants of bone marrow cells. Development, 1966, 16(3), 381-390. doi: 10.1242/dev.16.3.381 PMID: 5336210
  34. Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther., 2019, 10(1), 68. doi: 10.1186/s13287-019-1165-5 PMID: 30808416
  35. Wu, X.; Jiang, J.; Gu, Z.; Zhang, J.; Chen, Y.; Liu, X. Mesenchymal stromal cell therapies: Immunomodulatory properties and clinical progress. Stem Cell Res. Ther., 2020, 11(1), 345. doi: 10.1186/s13287-020-01855-9 PMID: 32771052
  36. Kholodenko, I.V.; Kurbatov, L.K.; Kholodenko, R.V.; Manukyan, G.V.; Yarygin, K.N. Mesenchymal stem cells in the adult human liver: Hype or hope? Cells, 2019, 8(10), 1127. doi: 10.3390/cells8101127 PMID: 31546729
  37. Hernández, R.; Jiménez-Luna, C.; Perales-Adán, J.; Perazzoli, G.; Melguizo, C.; Prados, J. Differentiation of human mesenchymal stem cells towards neuronal lineage: Clinical trials in nervous system disorders. Biomol. Ther., 2020, 28(1), 34-44. doi: 10.4062/biomolther.2019.065 PMID: 31649208
  38. Longhini, A.L.F.; Salazar, T.E.; Vieira, C.; Trinh, T.; Duan, Y.; Pay, L.M.; Li Calzi, S.; Losh, M.; Johnston, N.A.; Xie, H.; Kim, M.; Hunt, R.J.; Yoder, M.C.; Santoro, D.; McCarrel, T.M.; Grant, M.B. Peripheral blood-derived mesenchymal stem cells demonstrate immunomodulatory potential for therapeutic use in horses. PLoS One, 2019, 14(3), e0212642. doi: 10.1371/journal.pone.0212642 PMID: 30870461
  39. Huang, C.; Liu, Y.; Ding, J.; Dai, Y.; Le, L.; Wang, L.; Ding, E.; Yang, J. Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model. Cell Tissue Res., 2021, 385(1), 65-85. doi: 10.1007/s00441-021-03430-x PMID: 33760948
  40. Rohani, Z.; Ghollasi, M.; Aghamollaei, H.; Saidi, H.; Halabian, R.; Kheirollahzadeh, F.; Poormoghadam, D. A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field. Cell Tissue Res., 2022, 390(3), 399-411. doi: 10.1007/s00441-022-03691-0 PMID: 36152061
  41. Bonaventura, G.; Incontro, S.; Iemmolo, R.; La Cognata, V.; Barbagallo, I.; Costanzo, E.; Barcellona, M.L.; Pellitteri, R.; Cavallaro, S. Dental mesenchymal stem cells and neuro-regeneration: A focus on spinal cord injury. Cell Tissue Res., 2020, 379(3), 421-428. doi: 10.1007/s00441-019-03109-4 PMID: 31776822
  42. Skliutė, G.; Baušytė, R.; Borutinskaitė, V.; Valiulienė, G.; Kaupinis, A.; Valius, M.; Ramašauskaitė, D.; Navakauskienė, R. Menstrual blood-derived endometrial stem cells’ impact for the treatment perspective of female infertility. Int. J. Mol. Sci., 2021, 22(13), 6774. doi: 10.3390/ijms22136774 PMID: 34202508
  43. Chen, Y.; Hu, Y.; Zhou, X.; Zhao, Z.; Yu, Q.; Chen, Z.; Wang, Y.; Xu, P.; Yu, Z.; Guo, C.; Zhang, X.; Shi, Y. Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell Tissue Res., 2022, 388(3), 549-563. doi: 10.1007/s00441-022-03616-x PMID: 35347409
  44. Lee, S.H.; Choung, J.S.; Kim, J.M.; Kim, H.; Kim, M. Distribution of embryonic stem cell-derived mesenchymal stem cells after intravenous infusion in hypoxic–ischemic encephalopathy. Life, 2023, 13(1), 227. doi: 10.3390/life13010227 PMID: 36676176
  45. Moonshi, S.S.; Adelnia, H.; Wu, Y.; Ta, H.T. Placenta-derived mesenchymal stem cells for treatment of diseases: A clinically relevant source. Adv. Ther., 2022, 5(10), 2200054. doi: 10.1002/adtp.202200054
  46. Mebarki, M.; Abadie, C.; Larghero, J.; Cras, A. Human umbilical cord-derived mesenchymal stem/stromal cells: a promising candidate for the development of advanced therapy medicinal products. Stem Cell Res. Ther., 2021, 12(1), 152. doi: 10.1186/s13287-021-02222-y PMID: 33637125
  47. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4), 315-317. doi: 10.1080/14653240600855905 PMID: 16923606
  48. Attia, N.; Mashal, M. Mesenchymal stem cells: The past present and future. Adv. Exp. Med. Biol., 2020, 1312, 107-129. doi: 10.1007/5584_2020_595 PMID: 33159306
  49. Andrzejewska, A.; Lukomska, B.; Janowski, M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells, 2019, 37(7), 855-864. doi: 10.1002/stem.3016 PMID: 30977255
  50. Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med., 2019, 4(1), 22. doi: 10.1038/s41536-019-0083-6 PMID: 31815001
  51. Hsiao, C.H.; Ji, A.T.Q.; Chang, C.C.; Chien, M.H.; Lee, L.M.; Ho, J.H.C. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res. Ther., 2019, 10(1), 270. doi: 10.1186/s13287-019-1351-5 PMID: 31445515
  52. Adriansyah, R.F.; Margiana, R.; Supardi, S.; Narulita, P. Current progress in stem cell therapy for male infertility. Stem Cell Rev. Rep., 2023, 19(7), 2073-2093. doi: 10.1007/s12015-023-10577-3 PMID: 37440145
  53. Wei, Y.; Fang, J.; Cai, S.; Lv, C.; Zhang, S.; Hua, J. Primordial germ cell–like cells derived from canine adipose mesenchymal stem cells. Cell Prolif., 2016, 49(4), 503-511. doi: 10.1111/cpr.12271 PMID: 27374854
  54. Fang, J.; Wei, Y.; Lv, C.; Peng, S.; Zhao, S.; Hua, J. CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-β signaling. Sci. Rep., 2017, 7(1), 43851. doi: 10.1038/srep43851 PMID: 28256590
  55. Liu, H.; Chen, M.; Liu, L.; Ren, S.; Cheng, P.; Zhang, H. Induction of human adipose-derived mesenchymal stem cells into germ lineage using retinoic acid. Cell. Reprogram., 2018, 20(2), 127-134. doi: 10.1089/cell.2017.0063 PMID: 29620445
  56. Ghatreh, K.; Eliyasi, M.; Alaei, S.; Saki, G. Differentiation potential of adipose tissue-derived mesenchymal stem cells into germ cells with and without growth factors. Andrologia, 2021, 53(1), e13892. doi: 10.1111/and.13892 PMID: 33167071
  57. Luo, Y.; Xie, L.; Mohsin, A.; Ahmed, W.; Xu, C.; Peng, Y.; Hang, H.; Zhuang, Y.; Chu, J.; Guo, M. Efficient generation of male germ- like cells derived during co-culturing of adipose-derived mesenchymal stem cells with Sertoli cells under retinoic acid and testosterone induction. Stem Cell Res. Ther., 2019, 10(1), 91. doi: 10.1186/s13287-019-1181-5 PMID: 30867048
  58. Li, P.; Yan, G.; Han, L.; Pang, J.; Zhong, B.; Zhang, G.; Wang, F.; Zhang, Y. Overexpression of STRA8, BOULE, and DAZL genes promotes goat bone marrow-derived mesenchymal stem cells in vitro transdifferentiation toward putative male germ cells. Reprod. Sci., 2017, 24(2), 300-312. doi: 10.1177/1933719116654990 PMID: 27342271
  59. Ghasemzadeh-Hasankolaei, M.; Sedighi-Gilani, M.A.; Eslaminejad, M.B. Induction of ram bone marrow mesenchymal stem cells into germ cell lineage using transforming growth factor-β superfamily growth factors. Reprod. Domest. Anim., 2014, 49(4), 588-598. doi: 10.1111/rda.12327 PMID: 24888234
  60. Jouni, F.J.; Abdolmaleki, P.; Behmanesh, M.; Movahedin, M. An in vitro study of the impact of 4mT static magnetic field to modify the differentiation rate of rat bone marrow stem cells into primordial germ cells. Differentiation, 2014, 87(5), 230-237. doi: 10.1016/j.diff.2014.06.001 PMID: 25037498
  61. Afsartala, Z.; Rezvanfar, M.A.; Hodjat, M.; Tanha, S.; Assadollahi, V.; Bijangi, K.; Abdollahi, M.; Ghasemzadeh-Hasankolaei, M. Amniotic membrane mesenchymal stem cells can differentiate into germ cells in vitro. In vitro Cell Dev Biol Anim 2016, 52(10), 1060-1071. doi: 10.1007/s11626-016-0073-6 PMID: 27503516
  62. Alifi, F.; Asgari, H.R. Alteration in expression of primordial germ cell (PGC) markers during induction of human amniotic mesenchymal stem cells (hAMSCs). J. Reprod. Infertil., 2020, 21(1), 59-64. PMID: 32175266
  63. Li, B.; Liu, W.; Zhuang, M.; Li, N.; Wu, S.; Pan, S.; Hua, J. Overexpression of CD61 promotes hUC-MSC differentiation into male germ-like cells. Cell Prolif., 2016, 49(1), 36-47. doi: 10.1111/cpr.12236 PMID: 26840189
  64. Majidi, F.; Bamehr, H.; Shalchian, Z.; Kouchakian, M.R.; Mohammadzadeh, N.; Khalili, A. Differentiation of human umbilical cord mesenchymal stem cell into germ-like cell under effect of co-culture with testicular cell tissue. Anat. Histol. Embryol., 2020, 49(3), 359-364. doi: 10.1111/ahe.12537 PMID: 32034794
  65. Amidi, F.; Ataie Nejad, N.; Agha Hoseini, M.; Nayernia, K.; Mazaheri, Z.; Yamini, N.; Saeednia, S. In vitro differentiation process of human Wharton’s jelly mesenchymal stem cells to male germ cells in the presence of gonadal and non-gonadal conditioned media with retinoic acid. In vitro Cell. Dev. Biol. Anim 2015, 51(10), 1093-1101. doi: 10.1007/s11626-015-9929-4 PMID: 26427713
  66. Huang, P.; Lin, L.M.; Wu, X.Y.; Tang, Q.L.; Feng, X.Y.; Lin, G.Y.; Lin, X.; Wang, H.W.; Huang, T.H.; Ma, L. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J. Cell. Biochem., 2010, 109(4), 747-754. doi: 10.1002/jcb.22453 PMID: 20052672
  67. Xie, L.; Lin, L.; Tang, Q.; Li, W.; Huang, T.; Huo, X.; Liu, X.; Jiang, J.; He, G.; Ma, L. Sertoli cell-mediated differentiation of male germ cell-like cells from human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in an in vitro co-culture system. Eur. J. Med. Res., 2015, 20(1), 9. doi: 10.1186/s40001-014-0080-6 PMID: 25644284
  68. Karimaghai, N.; Tamadon, A.; Rahmanifar, F.; Mehrabani, D.; Raayat Jahromi, A.; Zare, S.; Khodabandeh, Z.; Razeghian Jahromi, I.; Koohi-Hoseinabadi, O.; Dianatpour, M. Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster. Iran. J. Basic Med. Sci., 2018, 21(7), 660-667. PMID: 30140403
  69. Zhankina, R. Restoration of spermatogenesis in azoospermic mice by bone marrow mesenchymal stromal. stem cells conditioned medium, 2022.
  70. Cakici, C. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int, 2013, 2013, 529589. doi: 10.1155/2013/529589
  71. Meligy, F.Y.; Abo Elgheed, A.T.; Alghareeb, S.M. Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat. Ultrastruct. Pathol., 2019, 43(1), 28-55. doi: 10.1080/01913123.2019.1572256 PMID: 30741078
  72. Ganjibakhsh, M.; Mehraein, F.; Koruji, M.; Bashiri, Z. The therapeutic potential of adipose tissue-derived mesenchymal stromal cells in the treatment of busulfan-induced azoospermic mice. J. Assist. Reprod. Genet., 2022, 39(1), 153-163. doi: 10.1007/s10815-021-02309-8 PMID: 34519944
  73. Hsiao, C.H.; Ji, A.T.Q.; Chang, C.C.; Cheng, C.J.; Lee, L.M.; Ho, J.H.C. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res. Ther., 2015, 6(1), 113. doi: 10.1186/s13287-015-0079-0 PMID: 26025454
  74. Hajihoseini, M.; Vahdati, A.; Hosseini, S.E.; Mehrabani, D.; Tamadon, A. Induction of spermatogenesis after stem cell therapy of azoospermic guinea pigs. Vet. Arh., 2017, 87(3), 333-350. doi: 10.24099/vet.arhiv.151209
  75. Badawy, A.A.; El-Magd, M.A.; AlSadrah, S.A.; Alruwaili, M.M. Altered expression of some miRNAs and their target genes following mesenchymal stem cell treatment in busulfan-induced azoospermic rats. Gene, 2020, 737, 144481. doi: 10.1016/j.gene.2020.144481 PMID: 32070749
  76. Abdelaziz, M.H.; Salah EL-Din, E.Y.; El-Dakdoky, M.H.; Ahmed, T.A. The impact of mesenchymal stem cells on doxorubicin-induced testicular toxicity and progeny outcome of male prepubertal rats. Birth Defects Res., 2019, 111(13), 906-919. doi: 10.1002/bdr2.1535 PMID: 31210400
  77. Khanmohammadi, N.; Malek, F.; Takzaree, N.; Malekzadeh, M.; Khanehzad, M.; Akanji, O.D.; Rastegar, T. Sertoli cell–conditioned medium induces differentiation of bone marrow–derived mesenchymal stem cells to male germ-like cells in busulfan-induced azoospermic mouse model. Reprod. Sci., 2024; 31(2): 372-92. doi: 10.1007/s43032-023-01332-7 PMID: 37737972
  78. Sabbaghi, M.A.; Bahrami, A.R.; Feizzade, B.; Kalantar, S.M.; Matin, M.M.; Kalantari, M.; Aflatoonian, A.; Saeinasab, M. Trial evaluation of bone marrow derived mesenchymal stem cells (MSCs) transplantation in revival of spermatogenesis in testicular torsion. Middle East Fertil. Soc. J., 2012, 17(4), 243-249. doi: 10.1016/j.mefs.2012.06.001
  79. Zhang, D.; Liu, X.; Peng, J.; He, D.; Lin, T.; Zhu, J.; Li, X.; Zhang, Y.; Wei, G. Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int. J. Mol. Sci., 2014, 15(8), 13151-13165. doi: 10.3390/ijms150813151 PMID: 25062349
  80. Abd Allah, S.H.; Pasha, H.F.; Abdelrahman, A.A.; Mazen, N.F. Molecular effect of human umbilical cord blood CD34-positive and CD34-negative stem cells and their conjugate in azoospermic mice. Mol. Cell. Biochem., 2017, 428(1-2), 179-191. doi: 10.1007/s11010-016-2928-2 PMID: 28120211
  81. Chen, H.; Tang, Q.L.; Wu, X.Y.; Xie, L.C.; Lin, L.M.; Ho, G.Y.; Ma, L. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Mol. Med. Rep., 2015, 12(1), 819-828. doi: 10.3892/mmr.2015.3528 PMID: 25815600
  82. Xiong, C-L.; Yang, R-F.; Liu, T-H.; Zhao, K. Enhancement of mouse germ cell-associated genes expression by injection of human umbilical cord mesenchymal stem cells into the testis of chemical-induced azoospermic mice. Asian J. Androl., 2014, 16(5), 698-704. doi: 10.4103/1008-682X.129209 PMID: 24830694
  83. Qian, C.; Meng, Q.; Lu, J.; Zhang, L.; Li, H.; Huang, B. Human amnion mesenchymal stem cells restore spermatogenesis in mice with busulfan-induced testis toxicity by inhibiting apoptosis and oxidative stress. Stem Cell Res. Ther., 2020, 11(1), 290. doi: 10.1186/s13287-020-01803-7 PMID: 32678012
  84. Zhang, W.; Yang, C.; Guo, W.; Guo, X.; Bian, J.; Zhou, Q.; Chen, M.; Zhou, J.; Chen, Z.; Wang, P.; Lv, X.; Xiao, Z.; Liu, C. Rotective effect of bone marrow mesenchymal stem cells-derived exosomes against testicular ischemia-reperfusion injury in rats. Nan Fang Yi Ke Da Xue Xue Bao, 2018, 38(8), 910-916. PMID: 30187884
  85. Deng, C.; Xie, Y.; Zhang, C.; Ouyang, B.; Chen, H.; Lv, L.; Yao, J.; Liang, X.; Zhang, Y.; Sun, X.; Deng, C.; Liu, G. Urine-derived stem cells facilitate endogenous spermatogenesis restoration of busulfan-induced nonobstructive azoospermic mice by paracrine exosomes. Stem Cells Dev., 2019, 28(19), 1322-1333. doi: 10.1089/scd.2019.0026 PMID: 31311428
  86. Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol., 2021, 14(1), 24. doi: 10.1186/s13045-021-01037-x PMID: 33579329
  87. Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; Heke, M.; Nguyen, L.T. Stem cell-based therapy for human diseases. Signal Transduct. Target. Ther., 2022, 7(1), 272. doi: 10.1038/s41392-022-01134-4 PMID: 35933430
  88. Mastrolia, I.; Foppiani, E.M.; Murgia, A.; Candini, O.; Samarelli, A.V.; Grisendi, G.; Veronesi, E.; Horwitz, E.M.; Dominici, M. Challenges in clinical development of mesenchymal stromal/stem cells: Concise review. Stem Cells Transl. Med., 2019, 8(11), 1135-1148. doi: 10.1002/sctm.19-0044 PMID: 31313507
  89. Yan, G.; Fan, Y.; Li, P.; Zhang, Y.; Wang, F. Ectopic expression of DAZL gene in goat bone marrow-derived mesenchymal stem cells enhances the trans-differentiation to putative germ cells compared to the exogenous treatment of retinoic acid or bone morphogenetic protein 4 signalling molecules. Cell Biol. Int., 2015, 39(1), 74-83. doi: 10.1002/cbin.10348 PMID: 25052690
  90. Salem, M.; Mirzapour, T.; Bayrami, A.; Sagha, M. Germ cell differentiation of bone marrow mesenchymal stem cells. Andrologia, 2019, 51(4), e13229. doi: 10.1111/and.13229 PMID: 30746735
  91. Drusenheimer, N.; Wulf, G.; Nolte, J.; Lee, J.H.; Dev, A.; Dressel, R.; Gromoll, J.; Schmidtke, J.; Engel, W.; Nayernia, K. Putative human male germ cells from bone marrow stem cells. Soc. Reprod. Fertil. Suppl., 2007, 63, 69-76. PMID: 17566262
  92. Mazaheri, Z.; Movahedin, M.; Rahbarizadeh, F.; Amanpour, S. Different doses of bone morphogenetic protein 4 promote the expression of early germ cell-specific gene in bone marrow mesenchymal stem cells. In vitro Cell. Dev. Biol. Anim., 2011, 47(8), 521-525. doi: 10.1007/s11626-011-9429-0 PMID: 21717271
  93. Shirazi, R.; Zarnani, A.H.; Soleimani, M.; Abdolvahabi, M.A.; Nayernia, K.; Kashani, I.R. BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells. Cell Biol. Int., 2012, 36(12), 1185-1193. doi: 10.1042/CBI20110651 PMID: 22988836
  94. Shirzeyli, M.H.; Khanlarkhani, N.; Amidi, F.; Shirzeyli, F.H.; Aval, F.S.; Sobhani, A. Bones Morphogenic Protein-4 and retinoic acid combined treatment comparative analysis for in vitro differentiation potential of murine mesenchymal stem cells derived from bone marrow and adipose tissue into germ cells. Microsc. Res. Tech., 2017, 80(11), 1151-1160. doi: 10.1002/jemt.22880 PMID: 28921810
  95. Behzadi Fard, S.; Mazaheri, Z.; Ghorbanmehr, N.; Movahedin, M.; Behzadi Fard, M.; Gholampour, M.A. Analysis of MiRNA-17 and MiRNA-146 expression during differentiation of spermatogonial stem like cells derived from mouse bone marrow mesenchymal stem cells. Int. J. Mol. Cell. Med., 2019, 8(1), 14-23. PMID: 32195202
  96. Nayernia, K.; Lee, J.H.; Drusenheimer, N.; Nolte, J.; Wulf, G.; Dressel, R.; Gromoll, J.; Engel, W. Derivation of male germ cells from bone marrow stem cells. Lab. Invest., 2006, 86(7), 654-663. doi: 10.1038/labinvest.3700429 PMID: 16652109
  97. Shirazi, R.; Zarnani, A.H.; Soleimani, M.; Nayernia, K.; Ragerdi Kashani, I. Differentiation of bone marrow-derived stage-specific embryonic antigen 1 positive pluripotent stem cells into male germ cells. Microsc. Res. Tech., 2017, 80(4), 430-440. doi: 10.1002/jemt.22812 PMID: 27990704
  98. Monfared, M.H.; Minaee, B.; Rastegar, T.; Khrazinejad, E.; Barbarestani, M. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells. Iran. J. Basic Med. Sci., 2016, 19(11), 1186-1192. PMID: 27917274
  99. Ghorbanlou, M.; Abdanipour, A.; Shirazi, R.; Malekmohammadi, N.; Shokri, S.; Nejatbakhsh, R. Indirect co-culture of testicular cells with bone marrow mesenchymal stem cells leads to male germ cell-specific gene expressions. Cell J., 2019, 20(4), 505-512. PMID: 30123996
  100. Abdel Aziz, M.T.; Mostafa, T.; Atta, H.; Asaad, S.; Fouad, H.H.; Mohsen, G.; Rashed, L.; Sabry, D.; Abbas, M. In vitro and in vivo lineage conversion of bone marrow stem cells into germ cells in experimental Azoospermia in rat. Stem Cell Stud., 2011, 1(1), 15. doi: 10.4081/scs.2011.e15
  101. Kumar, K. Rat bone marrow derived mesenchymal stem cells differentiate to germ cell like cells. bioRxiv, 2018, 418962. doi: 10.1101/418962
  102. Ghasemzadeh-Hasankolaei, M.; Eslaminejad, M.B.; Sedighi-Gilani, M. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell Dev Biol Anim., 2016, 52(1), 49-61. doi: 10.1007/s11626-015-9945-4 PMID: 26395124
  103. Ghasemzadeh-Hasankolaei, M.; Eslaminejad, M.B.; Batavani, R.; Sedighi-Gilani, M. Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow-derived mesenchymal stem cells into male germ cells. Andrologia, 2014, 46(1), 24-35. doi: 10.1111/and.12037 PMID: 23131047
  104. Hua, J.; Pan, S.; Yang, C.; Dong, W.; Dou, Z.; Sidhu, K.S. Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod. Biomed. Online, 2009, 19(1), 99-105. doi: 10.1016/S1472-6483(10)60052-1 PMID: 19573297
  105. Bräunig, P.; Glanzner, W.G.; Rissi, V.B.; Gonçalves, P.B.D. The differentiation potential of adipose tissue-derived mesenchymal stem cells into cell lineage related to male germ cells. Arq. Bras. Med. Vet. Zootec., 2018, 70(1), 160-168. doi: 10.1590/1678-4162-9132
  106. Jinlian, H. Multipotent mesenchymal stem cells (MSCs) from human umbilical cord: potential differentiation of germ cells. Afr. J. Biochem. Res., 2011, 5(4), 113-123.
  107. Latifpour, M.; Shakiba, Y.; Amidi, F.; Mazaheri, Z.; Sobhani, A. Differentiation of human umbilical cord matrix-derived mesenchymal stem cells into germ-like cells. Avicenna J. Med. Biotechnol., 2014, 6(4), 218-227. PMID: 25414784
  108. Li, N.; Pan, S.; Zhu, H.; Mu, H.; Liu, W.; Hua, J. BMP4 promotes SSEA-1 +HUC-MSC differentiation into male germ-like cells in vitro. Cell Prolif., 2014, 47(4), 299-309. doi: 10.1111/cpr.12115 PMID: 24923741
  109. Nejad, N.A.; Amidi, F.; Hoseini, M.A.; Nia, K.N.; Habibi, M.; Kajbafzadeh, A.M.; Mazaheri, Z.; Yamini, N. Male germ-like cell differentiation potential of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in co-culture with human placenta cells in presence of BMP4 and retinoic acid. Iran. J. Basic Med. Sci., 2015, 18(4), 325-333. PMID: 26019794
  110. Dissanayake, D.M.A.B.; Patel, H.; Wijesinghe, P.S. Differentiation of human male germ cells from Wharton’s jelly-derived mesenchymal stem cells. Clin. Exp. Reprod. Med., 2018, 45(2), 75-81. doi: 10.5653/cerm.2018.45.2.75 PMID: 29984207
  111. Ghaem Maghami, R.; Mirzapour, T.; Bayrami, A. Differentiation of mesenchymal stem cells to germ-like cells under induction of Sertoli cell-conditioned medium and retinoic acid. Andrologia, 2018, 50(3), e12887. doi: 10.1111/and.12887 PMID: 28944567
  112. Hua, J.; Yu, H.; Dong, W.; Yang, C.; Gao, Z.; Lei, A.; Sun, Y.; Pan, S.; Wu, Y.; Dou, Z. Characterization of mesenchymal stem cells (MSCs) from human fetal lung: Potential differentiation of germ cells. Tissue Cell, 2009, 41(6), 448-455. doi: 10.1016/j.tice.2009.05.004 PMID: 19651422
  113. Tamadon, A.; Mehrabani, D.; Rahmanifar, F.; Jahromi, A.R.; Panahi, M.; Zare, S.; Khodabandeh, Z.; Jahromi, I.R.; Tanideh, N.; Dianatpour, M.; Ramzi, M.; Koohi-Hoseinabadi, O. Induction of spermatogenesis by bone marrow-derived mesenchymal stem cells in busulfan-induced azoospermia in hamste. Int. J. Stem Cells, 2015, 8(2), 134-145. doi: 10.15283/ijsc.2015.8.2.134 PMID: 26634062
  114. Lue, Y.; Erkkila, K.; Liu, P.Y.; Ma, K.; Wang, C.; Hikim, A.S.; Swerdloff, R.S. Fate of bone marrow stem cells transplanted into the testis: potential implication for men with testicular failure. Am. J. Pathol., 2007, 170(3), 899-908. doi: 10.2353/ajpath.2007.060543 PMID: 17322375
  115. Sherif, I.O.; Sabry, D.; Abdel-Aziz, A.; Sarhan, O.M. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Res. Ther., 2018, 9(1), 196. doi: 10.1186/s13287-018-0946-6 PMID: 30021657
  116. Ghasemzadeh-Hasankolaei, M.; Batavani, R.; Eslaminejad, M.B.; Sayahpour, F. Transplantation of autologous bone marrow mesenchymal stem cells into the testes of infertile male rats and new germ cell formation. Int. J. Stem Cells, 2016, 9(2), 250-263. doi: 10.15283/ijsc16010 PMID: 27430978
  117. Zahkook, S. Mesenchymal stem cells restore fertility in induced azoospermic rats following chemotherapy administration. J. Reprod. Infertil., 2014, 5(2), 50-57.
  118. Rahmanifar, F.; Tamadon, A.; Mehrabani, D.; Zare, S.; Abasi, S.; Keshavarz, S.; Dianatpour, M.; Khodabandeh, Z.; Jahromi, I.R.; Koohi-Hoseinabadi, O. Histomorphometric evaluation of treatment of rat azoosper-mic seminiferous tubules by allotransplantation of bone marrow-derived mesenchymal stem cells. Iran. J. Basic Med. Sci., 2016, 19(6), 653-661. PMID: 27482347
  119. Zhou, X.Y.; Ma, Y.Z.; Wang, X.H.; Liu, D.J.; Ren, Y.; Ji, X.P. Bone marrow mesenchymal stem cells to repair the reproductive system of male azoospermia rats. Zhonghua Nan Ke Xue, 2015, 21(8), 692-697. PMID: 26442294
  120. Monsefi, M.; Fereydouni, B.; Rohani, L.; Talaei, T. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran. J. Reprod. Med., 2013, 11(7), 537-544. PMID: 24639788
  121. Hassan, A.I.; Alam, S.S. Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem Cell Res. Ther., 2014, 5(6), 131. doi: 10.1186/scrt521 PMID: 25422144
  122. Wang, F.; Liu, C.; Zhang, S.; Liu, W.; Hua, J. Transplantation of goat bone marrow mesenchymal stem cells (gMSCs) help restore spermatogenesis in endogenous germ cells-depleted mouse models. J. Integr. Agric., 2013, 12(3), 483-494. doi: 10.1016/S2095-3119(13)60249-X
  123. Tamadon, A.; Mehrabani, D.; Hassanshahi, M.A.; Zare, S.; Keshavarz, S.; Rahmanifar, F.; Dianatpour, M.; Khodabandeh, Z.; Jahromi, I.; Tanideh, N.; Ramzi, M.; Aqababa, H.; Kuhi-Hoseinabadi, O. Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. J. Hum. Reprod. Sci., 2015, 8(2), 103-110. doi: 10.4103/0974-1208.158618 PMID: 26157302

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers