Enhancing the Regenerative Potential of Adipose-Derived Mesenchymal Stem Cells Through TLR4-Mediated Signaling


Cite item

Full Text

Abstract

Introduction:Toll-like receptor 4 (TLR4) is a receptor that traditionally plays an important role in immunomodulation (regulation of the immune system) and the initiation of proinflammatory responses. TLR4 is used in the body to recognize molecular patterns of pathogens or damaged cells from outside. However, in recent years, it has also become clear that TLR4 can affect the immune system and the function of stem cells, especially mesenchymal stem cells. Therefore, understanding how TLR4 signaling works at the cellular and molecular level and using this knowledge in regenerative medicine could be potentially useful, especially in the treatment of adipose- derived mesenchymal stem cells (ADMSCs). How these cells can use TLR4 signaling when used to increase their regenerative potential and repair tissues is an area of research.

Aims:This study aims to elucidate the multifaceted role of TLR4-mediated signaling in ADMSCs.

Methods:Employing a comprehensive set of assays, including MTT for cell viability, flow cytometry for surface marker expression, and gene expression analysis, we demonstrate that TLR4 activation significantly modulates key aspects of ADMSC biology. Specifically, TLR4 signaling was found to regulate ADMSCs proliferation, surface marker expression, and regenerative capacity in a dose- and time-dependent manner. Furthermore, TLR4 activation conferred cytoprotective effects against Doxorubicin (DOX)-induced cellular apoptosis.

Results:These findings suggest that TLR4 signaling could be used to enhance the regenerative abilities of ADMSCs and enable ADMSC-based therapies to be used more effectively for tissue engineering and therapeutic purposes.

Conclusion:However, it is important to note that research in this area needs more details and clinical studies.

About the authors

Demet Kaçaroğlu

Department of Medical Biology, Faculty of Medicine, Lokman Hekim University

Email: info@benthamscience.net

Seher Yaylacı

Department of Medical Biology, Faculty of Medicine, Lokman Hekim University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Pountos, I.; Giannoudis, P.V. Biology of mesenchymal stem cells. Injury, 2005, 36(3), S8-S12. doi: 10.1016/j.injury.2005.07.028 PMID: 16188553
  2. Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and clinical applications of mesenchymal stem cells. Sultan Qaboos Univ. Med. J., 2018, 18(3), 264. doi: 10.18295/squmj.2018.18.03.002 PMID: 30607265
  3. Ding, D.C.; Shyu, W.C.; Lin, S.Z. Mesenchymal stem cells. Cell Transplant., 2011, 20(1), 5-14. doi: 10.3727/096368910X PMID: 21396235
  4. Lin, F. Adipose tissue-derived mesenchymal stem cells: A fat chance of curing kidney disease. Kidney Int, 2012, 82, 731-733. doi: 10.1038/ki.2012.158
  5. Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev., 2012, 21(14), 2724-2752. doi: 10.1089/scd.2011.0722 PMID: 22468918
  6. Squillaro, T.; Peluso, G.; Galderisi, U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant., 2016, 25(5), 829-848. doi: 10.3727/096368915X689622 PMID: 26423725
  7. Parekkadan, B.; Milwid, J.M. Mesenchymal stem cells as therapeutics. Annu. Rev. Biomed. Eng., 2010, 12(1), 87-117. doi: 10.1146/annurev-bioeng-070909-105309 PMID: 20415588
  8. Lee, B.C.; Kang, K.S. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res. Ther., 2020, 11(1), 397. doi: 10.1186/s13287-020-01920-3 PMID: 32928306
  9. Yuk, J.M.; Jo, E.K. Toll-like receptors and innate immunity. J. Bacteriol. Virol., 2011, 41(4), 225-235. doi: 10.4167/jbv.2011.41.4.225
  10. Frederiksen, H.R.; Haukedal, H.; Freude, K.; Muthuraju, S. Cell type specific expression of toll-like receptors in human brains and implications in Alzheimer’s disease. BioMed Res. Int., 2019, 2019, 1-18. doi: 10.1155/2019/7420189 PMID: 31396533
  11. Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol., 2014, 5, 461. doi: 10.3389/FIMMU.2014.00461/BIBTEX PMID: 25309543
  12. Waterman, R.S.; Tomchuck, S.L.; Henkle, S.L.; Betancourt, A.M. A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One, 2010, 5(4), e10088. doi: 10.1371/journal.pone.0010088 PMID: 20436665
  13. Qu, G.; Xie, X.; Li, X.; Chen, Y.; Isla, N.D.; Huselstein, C.; Stoltz, J-F.; Li, Y. Immunomodulatory function of mesenchymal stem cells: regulation and application. J. Cell. Immunother., 2018, 4(1), 1-3. doi: 10.1016/j.jocit.2018.09.001
  14. He, X.; Wang, H.; Jin, T.; Xu, Y.; Mei, L.; Yang, J. TLR4 activation promotes bone marrow MSC proliferation and osteogenic differentiation via Wnt3a and Wnt5a signaling. PLoS One, 2016, 11(3), e0149876. doi: 10.1371/journal.pone.0149876
  15. Yao, Y.; Zhang, F.; Wang, L.; Zhang, G.; Wang, Z.; Chen, J.; Gao, X. Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J. Biomed. Sci., 2009, 16(1), 74. doi: 10.1186/1423-0127-16-74 PMID: 19691857
  16. Bunnell, B.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods, 2008, 45(2), 115-120. doi: 10.1016/j.ymeth.2008.03.006 PMID: 18593609
  17. Kouokam, J.C.; Huskens, D.; Schols, D.; Johannemann, A.; Riedell, S.K.; Walter, W.; Walker, J.M.; Matoba, N.; O’Keefe, B.R.; Palmer, K.E. Investigation of griffithsin’s interactions with human cells confirms its outstanding safety and efficacy profile as a microbicide candidate. PLoS One, 2011, 6(8), e22635. doi: 10.1371/journal.pone.0022635 PMID: 21829638
  18. Li, N.; Du, H.; Mao, L.; Xu, G.; Zhang, M.; Fan, Y.; Dong, X.; Zheng, L.; Wang, B.; Qin, X.; Jiang, X.; Chen, C.; Zou, Z.; Zhang, J. Reciprocal regulation of NRF2 by autophagy and ubiquitin–proteasome modulates vascular endothelial injury induced by copper oxide nanoparticles. J. Nanobiotechnology, 2022, 20(1), 270. doi: 10.1186/s12951-022-01486-7 PMID: 35690781
  19. Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 2013, 15(6), 641-648. doi: 10.1016/j.jcyt.2013.02.006 PMID: 23570660
  20. Sautter, N.B.; Delaney, K.L.; Hausman, F.A.; Trune, D.R. Tissue remodeling gene expression in a murine model of chronic rhinosinusitis. Laryngoscope, 2012, 122(4), 711-717. doi: 10.1002/lary.22148 PMID: 22294478
  21. Najar, M.; Krayem, M.; Meuleman, N.; Bron, D.; Lagneaux, L. Mesenchymal stromal cells and toll-like receptor priming: A critical review. Immune Netw., 2017, 17(2), 89-102. doi: 10.4110/in.2017.17.2.89 PMID: 28458620
  22. Wu, S.; Wang, Y.; Yuan, Z.; Wang, S.; Du, H.; Liu, X.; Wang, Q.; Zhu, X. Human adipose-derived mesenchymal stem cells promote breast cancer MCF7 cell epithelial-mesenchymal transition by cross interacting with the TGF-β/Smad and PI3K/AKT signaling pathways. Mol. Med. Rep., 2019, 19(1), 177-186. doi: 10.3892/MMR.2018.9664/HTML PMID: 30483746
  23. Wang, Y.; Abarbanell, A.M.; Herrmann, J.L.; Weil, B.R.; Manukyan, M.C.; Poynter, J.A.; Meldrum, D.R. TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PLoS One, 2010, 5(12), e14206. doi: 10.1371/journal.pone.0014206 PMID: 21151968
  24. Herzmann, N.; Salamon, A.; Fiedler, T.; Peters, K. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation. Exp. Cell Res., 2017, 350(1), 115-122. doi: 10.1016/j.yexcr.2016.11.012 PMID: 27865937
  25. Gaikwad, S.; Agrawal-Rajput, R. Lipopolysaccharide from rhodobacter sphaeroides attenuates microglia-mediated inflammation and phagocytosis and directs regulatory T cell response. Int. J. Inflamm., 2015, 2015, 1-13. doi: 10.1155/2015/361326 PMID: 26457222
  26. Mei, Y.B.; Zhou, W.Q.; Zhang, X.Y.; Wei, X.J.; Feng, Z.C. Lipopolysaccharides shapes the human Wharton’s jelly-derived mesenchymal stem cells in vitro. Cell. Physiol. Biochem., 2013, 32(2), 390-401. doi: 10.1159/000354446 PMID: 23988491
  27. Li, H.; Xu, H.; Liu, S. Toll-like receptors 4 induces expression of matrix metalloproteinase-9 in human aortic smooth muscle cells. Mol. Biol. Rep., 2011, 38(2), 1419-1423. doi: 10.1007/s11033-010-0246-4 PMID: 20725790
  28. Lee, S.C.; Jeong, H.J.; Lee, S.K.; Kim, S.J. Lipopolysaccharide preconditioning of adipose-derived stem cells improves liver-regenerating activity of the secretome. Stem Cell Res. Ther., 2015, 6(1), 75. doi: 10.1186/s13287-015-0072-7 PMID: 25890074
  29. Rusanov, A.L.; Biryukova, Y.K.; Shonina, O.O.; Luzgina, E.D.; Luzgina, N.G. TLR4 activation of mesenchymal stem cells enhances the regenerative properties of their secretome. Cell Technol. Biol. Med., 2020, (4), 255-261. doi: 10.47056/1814-3490-2020-4-255-261 PMID: 33725255
  30. Baxter-Holland, M.; Dass, C.R. Doxorubicin, mesenchymal stem cell toxicity and antitumour activity: implications for clinical use. J. Pharm. Pharmacol., 2018, 70, 320-327. doi: 10.1111/jphp.12869
  31. Yang, X.; Chen, G.; Wang, Y.; Xian, S.; Zhang, L.; Zhu, S.; Pan, F.; Cheng, Y. TLR4 promotes the expression of HIF-1α by triggering reactive oxygen species in cervical cancer cells in�vitro-implications for therapeutic intervention. Mol. Med. Rep., 2017, 17(2), 2229-2238. doi: 10.3892/mmr.2017.8108 PMID: 29207048
  32. Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat Protoc, 2006, 1(5), 2315-2319. doi: 10.1038/nprot.2006.339
  33. Moraes, D.A.; Sibov, T.T.; Pavon, L.F.; Alvim, P.Q.; Bonadio, R.S.; Da Silva, J.R.; Pic-Taylor, A.; Toledo, O.A.; Marti, L.C.; Azevedo, R.B.; Oliveira, D.M. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res. Ther., 2016, 7(1), 97. doi: 10.1186/s13287-016-0359-3 PMID: 27465541
  34. Pham, L.H.; Vu, N.B.; Van Pham, P.; Van Pham, P. The subpopulation of CD105 negative mesenchymal stem cells show strong immunomodulation capacity compared to CD105 positive mesenchymal stem cells. Biomed. Res. Ther., 2019, 6(4), 3131-3140. doi: 10.15419/bmrat.v6i4.538
  35. Ode, A.; Kopf, J.; Kurtz, A.; Schmidt-Bleek, K.; Schrade, P.; Kolar, P.; Buttgerei, F.; Lehmann, K.; Hutmacher, D.W.; Duda, G.N.; Kasper, G. CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. Eur. Cell. Mater., 2011, 22, 26-42. doi: 10.22203/eCM.v022a03 PMID: 21732280

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers