Distinctive Expression of MetastamiRs in Breast Cancer Mesenchymal Stem Cells Isolated from Solid Tumor
- Authors: Hashemi Z.1, Moghadam M.2, Khalili S.3, Hashemi S.4, Sepehr K.5, Sadroddiny E.6
-
Affiliations:
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University
- Department of Biology Sciences, Shahid Rajaee Teacher Training University,
- Department of Immunology, School of Medicine,, Shahid Beheshti University of Medical Sciences
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine,, Tehran University of Medical Sciences
- Issue: Vol 19, No 11 (2024)
- Pages: 1525-1534
- Section: Medicine
- URL: https://jdigitaldiagnostics.com/1574-888X/article/view/645619
- DOI: https://doi.org/10.2174/011574888X272313231124063458
- ID: 645619
Cite item
Full Text
Abstract
Background:MSCs are a part of the tumor microenvironment, which secrete cytokines and chemokines. They can affect metastasis and the growth of tumors. metastamiRs are newly recognized regulatory elements of the metastasis pathway which are involved in epithelial-to-mesenchymal transition (EMT).
Objective:In the present study, we aimed to assess the expression profile of metastamiRs in the context of MSCs in correlation with their invasion and migration power.
Methods:Tumor-isolated BC-MSCs and normal human mammary epithelial cells (HMECs) along with MCF-7, MDA-MB231, and MCF-10A cells were prepared and confirmed for their identity. The cells were assessed for CD44+CD24¯ percentage, Oct-4, and Survivin expression. GEO, KEGG, and TCGA databases were investigated to detect differential miR-expressions. Real- time PCR for 13 miRs was performed using LNA primers. Ultimately, Transwell-Matrigel assays as used to assess the level of migration and invasion.
Results:Our results indicated that some oncomiRs like miR-10b were upregulated in BC-MSCs, while the levels of miR-373 and miR-520c were similar to the MCF-10A. Generally, miR-200 family members were on lower levels compared to the other miR-suppressor (miR-146a, 146b, and 335). miR-31 and 193b were up-regulated in MCF-10A. The most invasiveness was observed in the MDA-MB231 cell line.
Conclusion:We have demonstrated that the miR-expression levels of BC-MSCs are somewhat in between MCF-7 and MDA-MB231 miR-expression levels. This could be the logic behind the moderate level of invasion in BC-MSCs. Therefore, miR-therapy approaches such as miR-mimic or antagomiRs could be used for BC-MSCs in clinical cancer therapy.
About the authors
Zahra Hashemi
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences
Email: info@benthamscience.net
Mehdi Moghadam
Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University
Author for correspondence.
Email: info@benthamscience.net
Saeed Khalili
Department of Biology Sciences, Shahid Rajaee Teacher Training University,
Email: info@benthamscience.net
Seyed Hashemi
Department of Immunology, School of Medicine,, Shahid Beheshti University of Medical Sciences
Email: info@benthamscience.net
Koushan Sepehr
Department of Immunology, School of Public Health, Tehran University of Medical Sciences
Email: info@benthamscience.net
Esmaeil Sadroddiny
Department of Medical Biotechnology, School of Advanced Technologies in Medicine,, Tehran University of Medical Sciences
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30. doi: 10.3322/caac.21332 PMID: 26742998
- Farokhimanesh, S.; Forouzandeh Moghadam, M.; Ebrahimi, M.; Hashemi, Z.S. Metastasis inhibition by cell type specific expression of BRMS1 gene under the regulation of miR200 family response elements. Cell J., 2021, 23(2), 225-237. PMID: 34096224
- Eccles, S.A.; Welch, D.R. Metastasis: recent discoveries and novel treatment strategies. Lancet, 2007, 369(9574), 1742-1757. doi: 10.1016/S0140-6736(07)60781-8 PMID: 17512859
- Hatami, Z.; Hashemi, Z.S.; Eftekhary, M.; Amiri, A.; Karpisheh, V.; Nasrollahi, K.; Jafari, R. Natural killer cell-derived exosomes for cancer immunotherapy: innovative therapeutics art. Cancer Cell Int., 2023, 23(1), 157. doi: 10.1186/s12935-023-02996-6 PMID: 37543612
- Hashemi, Z.S.; Ghavami, M.; Kiaie, S.H.; Mohammadi, F.; Barough, M.S.; Khalili, S.; Hosseini-Farjam, Z.; Mossahebi-Mohammadi, M.; Sheidary, A.; Ghavamzadeh, A.; Forooshani, R.S. Novel delivery of sorafenib by natural killer cell-derived exosomes-enhanced apoptosis in triple-negative breast cancer. Nanomedicine (Lond.), 2023, 18(5), 437-453. doi: 10.2217/nnm-2022-0237 PMID: 37199259
- Hashemi, Z.S.; Ghavami, M.; Khalili, S.; Naghib, S.M. The Emerging Role of Exosome Nanoparticles in Regenerative Medicine. Nanopharmaceuticals in Regenerative Medicine; CRC Press, 2022, pp. 67-93. doi: 10.1201/9781003153504-5
- Mohammadpour, H.; Khalili, S.; Hashemi, Z.S. Kremen is beyond a subsidiary co-receptor of Wnt signaling: An in silico validation. Turk. J. Biol., 2015, 39(3), 501-510. doi: 10.3906/biy-1409-1
- Hashemi, Z.S.; Moghadam, M.F.; Soleimani, M. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells. In Vitro Cell Dev Biol Anim 2015, 51(5), 495-506. doi: 10.1007/s11626-014-9854-y PMID: 25539863
- Hashemi, Z.S.; Forouzandeh Moghadam, M.; Soleimani, M.; Hafizi, M.; Amirizadeh, N. TGF-b downregulation by RNAi technique in ex vivo-expanded HSCs on 3D DBM scaffold. Tehran Uni. Med. J., 2012, 70(2)
- Hashemi, Z.S.; Moghadam, M.F.; Farokhimanesh, S.; Rajabibazl, M.; Sadroddiny, E. Inhibition of breast cancer metastasis by co-transfection of miR-31/193b-mimics. Iran. J. Basic Med. Sci., 2018, 21(4), 427-433. PMID: 29796229
- Hashemi, Z.S.; Moghadam, M.F.; Khalili, S.; Ghavami, M.; Salimi, F.; Sadroddiny, E. Additive effect of metastamiR-193b and breast cancer metastasis suppressor 1 as an anti-metastatic strategy. Breast Cancer, 201p, 26(2), 215-228. PMID: 30284194
- Hashemi, Z.S.; Forouzandeh Moghadam, M.; Sadroddiny, E. Varying miR-193b-3p expression patterns in breast cancer cell lines indicates its potential for cancer management strategies. Int. J. Cancer Manag., 2018, 11(8), e63540. doi: 10.5812/ijcm.63540
- Rezaei, T.; Amini, M.; Hashemi, Z.S.; Mansoori, B.; Rezaei, S.; Karami, H. microRNA-181 serves as a dual-role regulator in the development of human cancers. Free Radic. Biol. Med., 2020, 152, 432-454 . PMID: 31899343
- Garofalo, M.; Croce, C.M. microRNAs: Master regulators as potential therapeutics in cancer. Annu. Rev. Pharmacol. Toxicol., 2011, 51(1), 25-43. doi: 10.1146/annurev-pharmtox-010510-100517 PMID: 20809797
- Langroudi, L.; Forouzandeh, M.; Soleimani, M.; Atashi, A.; Golestaneh, A.F. Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells. Mol. Biol. Rep., 2013, 40(7), 4429-4437. doi: 10.1007/s11033-013-2533-3 PMID: 23661017
- Goh, J.N.; Loo, S.Y.; Datta, A.; Siveen, K.S.; Yap, W.N.; Cai, W.; Shin, E.M.; Wang, C.; Kim, J.E.; Chan, M.; Dharmarajan, A.M.; Lee, A.S.G.; Lobie, P.E.; Yap, C.T.; Kumar, A.P. MICRORNAS in breast cancer: regulatory roles governing the hallmarks of cancer. Biol. Rev. Camb. Philos. Soc., 2016, 91(2), 409-428. doi: 10.1111/brv.12176 PMID: 25631495
- Ma, L.; Weinberg, R.A. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet., 2008, 24(9), 448-456. doi: 10.1016/j.tig.2008.06.004 PMID: 18674843
- Nicoloso, M.S.; Spizzo, R.; Shimizu, M.; Rossi, S.; Calin, G.A. MicroRNAs the micro steering wheel of tumour metastases. Nat. Rev. Cancer, 2009, 9(4), 293-302. doi: 10.1038/nrc2619 PMID: 19262572
- Choghaei, E.; Khamisipour, G.; Falahati, M.; Naeimi, B.; Mossahebi-Mohammadi, M.; Tahmasebi, R.; Hasanpour, M.; Shamsian, S.; Hashemi, Z.S. Knockdown of microRNA-29a changes the expression of heat shock proteins in breast carcinoma MCF-7 cells. Oncol. Res., 2016, 23(1), 69-78. doi: 10.3727/096504015X14478843952906 PMID: 26802653
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866. doi: 10.1038/nrc1997 PMID: 17060945
- Zhang, H.; Li, Y.; Lai, M. The microRNA network and tumor metastasis. Oncogene, 2010, 29(7), 937-948. doi: 10.1038/onc.2009.406 PMID: 19935707
- Kai, K.; Arima, Y.; Kamiya, T.; Saya, H. Breast cancer stem cells. Breast Cancer, 2010, 17(2), 80-85. doi: 10.1007/s12282-009-0176-y PMID: 19806428
- Thompson, E.W.; Haviv, I. The social aspects of EMT-MET plasticity. Nat. Med., 2011, 17(9), 1048-1049. doi: 10.1038/nm.2437 PMID: 21900919
- Yazdani, S.O.; Pedram, M.; Hafizi, M.; Kabiri, M.; Soleimani, M.; Dehghan, M.M.; Jahanzad, I.; Gheisari, Y.; Hashemi, S.M. A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat. Tissue Cell, 2012, 44(4), 205-213. doi: 10.1016/j.tice.2012.03.003 PMID: 22551686
- Sadat Hashemi, Z.; Forouzandeh Moghadam, M.; Soleimani, M. Comparison of the ex vivo expansion of UCB-derived CD34+ in 3D DBM/MBA scaffolds with USSC as a feeder layer. Iran. J. Basic Med. Sci., 2013, 16(10), 1075-1087. PMID: 24379965
- Berthon, P.; Pancino, G.; Cremoux, P.; Roseto, A.; Gespach, C.; Calvo, F. Characterization of normal breast epithelial cells in primary cultures: Differentiation and growth factor receptors studies. In vitro Cell Dev Biol 1992, 28(11-12), 716-724. doi: 10.1007/BF02631059 PMID: 1282913
- Prat, A.; Perou, C.M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol., 2011, 5(1), 5-23. doi: 10.1016/j.molonc.2010.11.003 PMID: 21147047
- Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68. doi: 10.1186/bcr2635 PMID: 20813035
- Ponti, D.; Costa, A.; Zaffaroni, N.; Pratesi, G.; Petrangolini, G.; Coradini, D.; Pilotti, S.; Pierotti, M.A.; Daidone, M.G. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res., 2005, 65(13), 5506-5511. doi: 10.1158/0008-5472.CAN-05-0626 PMID: 15994920
- Hashemi, Z.S.; Khalili, S.; Forouzandeh Moghadam, M.; Sadroddiny, E. Lung cancer and miRNAs: a possible remedy for anti-metastatic, therapeutic and diagnostic applications. Expert Rev. Respir. Med., 2017, 11(2), 147-157. doi: 10.1080/17476348.2017.1279403 PMID: 28118799
- Huang, Q.; Gumireddy, K.; Schrier, M.; le Sage, C.; Nagel, R.; Nair, S.; Egan, D.A.; Li, A.; Huang, G.; Klein-Szanto, A.J.; Gimotty, P.A.; Katsaros, D.; Coukos, G.; Zhang, L.; Puré, E.; Agami, R. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol., 2008, 10(2), 202-210. doi: 10.1038/ncb1681 PMID: 18193036
- Heyn, H.; Engelmann, M.; Schreek, S.; Ahrens, P.; Lehmann, U.; Kreipe, H.; Schlegelberger, B.; Beger, C. MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int. J. Cancer, 2011, 129(12), 2797-2806. doi: 10.1002/ijc.25962 PMID: 21618216
- Hamel, K.M.; King, C.T.; Cavalier, M.B.; Liimatta, K.Q.; Rozanski, G.L.; King, T.A., Jr; Lam, M.; Bingham, G.C.; Byrne, C.E.; Xing, D.; Collins-Burow, B.M.; Burow, M.E.; Belgodere, J.A.; Bratton, M.R.; Bunnell, B.A.; Martin, E.C. Breast cancer-stromal interactions: adipose-derived stromal/stem cell age and cancer subtype mediated remodeling. Stem Cells Dev., 2022, 31(19-20), 604-620. doi: 10.1089/scd.2021.0279 PMID: 35579936
- Wei, F.; Cao, C.; Xu, X.; Wang, J. Diverse functions of miR-373 in cancer. J. Transl. Med., 2015, 13(1), 162. doi: 10.1186/s12967-015-0523-z PMID: 25990556
- Fath, M.K.; Zahedi, F.; Hashemi, Z.S.; Khalili, S. Evaluation of differentiation quality of several differentiation inducers of bone marrow-derived mesenchymal stem cells to nerve cells by assessing expression of beta-tubulin 3 marker: A systematic review. Curr. Stem Cell Res. Ther., 2021, 16(8), 994-1004. doi: 10.2174/1574888X16666210303150814 PMID: 33655875
- Jokar, F.; Mahabadi, J.A.; Salimian, M.; Taherian, A.; Hayat, S.M.G.; Sahebkar, A.; Atlasi, M.A. Differential expression of HSP90β in MDA-MB-231 and MCF-7 cell lines after treatment with doxorubicin. J. Pharmacopuncture, 2019, 22(1), 28-34. doi: 10.3831/KPI.2019.22.003 PMID: 30988998
- Jo, H.; Shim, K.; Jeoung, D. Potential of the miR-200 family as a target for developing anti-cancer therapeutics. Int. J. Mol. Sci., 2022, 23(11), 5881. doi: 10.3390/ijms23115881 PMID: 35682560
- Zhang, C.; Zhai, W.; Xie, Y.; Chen, Q.; Zhu, W.; Sun, X. Mesenchymal stem cells derived from breast cancer tissue promote the proliferation and migration of the MCF-7 cell line in vitro. Oncol. Lett., 2013, 6(6), 1577-1582. doi: 10.3892/ol.2013.1619 PMID: 24260049
- Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007, 449(7163), 682-688. doi: 10.1038/nature06174 PMID: 17898713
- Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007, 449(7162), 557-563. doi: 10.1038/nature06188 PMID: 17914389
- Liu, S.; Ginestier, C.; Ou, S.J.; Clouthier, S.G.; Patel, S.H.; Monville, F.; Korkaya, H.; Heath, A.; Dutcher, J.; Kleer, C.G.; Jung, Y.; Dontu, G.; Taichman, R.; Wicha, M.S. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res., 2011, 71(2), 614-624. doi: 10.1158/0008-5472.CAN-10-0538 PMID: 21224357
- Ono, M.; Kosaka, N.; Tominaga, N.; Yoshioka, Y.; Takeshita, F.; Takahashi, R.; Yoshida, M.; Tsuda, H.; Tamura, K.; Ochiya, T. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal., 2014, 7(332), ra63. doi: 10.1126/scisignal.2005231 PMID: 24985346
- Xavier, P.L.P.; Cordeiro, Y.G.; Rochetti, A.L.; Sangalli, J.R.; Zuccari, D.A.P.C.; Silveira, J.C.; Bressan, F.F.; Fukumasu, H. ZEB1 and ZEB2 transcription factors are potential therapeutic targets of canine mammary cancer cells. Vet. Comp. Oncol., 2018, 16(4), 596-605. doi: 10.1111/vco.12427 PMID: 30047225
- Song, Y.; Washington, M.K.; Crawford, H.C. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res., 2010, 70(5), 2115-2125. doi: 10.1158/0008-5472.CAN-09-2979 PMID: 20160041
- Morrison, G.; Scognamiglio, R.; Trumpp, A.; Smith, A. Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification. EMBO J., 2016, 35(3), 356-368. doi: 10.15252/embj.201592116 PMID: 26675138
- Körner, C.; Keklikoglou, I.; Bender, C.; Wörner, A.; Münstermann, E.; Wiemann, S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C ϵ (PKCepsilon). J. Biol. Chem., 2013, 288(12), 8750-8761. doi: 10.1074/jbc.M112.414128 PMID: 23364795
- Fu, Z.; Wang, L.; Li, S.; Chen, F.; Au-Yeung, K.K.W.; Shi, C. MicroRNA as an important target for anticancer drug development. Front. Pharmacol., 2021, 12, 736323. doi: 10.3389/fphar.2021.736323 PMID: 34512363
- McDermott, A.M.; Heneghan, H.M.; Miller, N.; Kerin, M.J. The therapeutic potential of microRNAs: Disease modulators and drug targets. Pharm. Res., 2011, 28(12), 3016-3029. doi: 10.1007/s11095-011-0550-2 PMID: 21818713
Supplementary files
