New Concepts in the Manipulation of the Aging Process


Cite item

Full Text

Abstract

This review explores the current concepts in aging and then goes on to describe a novel, ground-breaking technology which will change the way we think about and manage aging. The foundation of the review is based on the work carried out on the QiLaser activation of human Very Small Embryonic Like (hVSEL) pluripotent stem cells in autologous Platelet Rich Plasma (PRP), known as the Qigeneration Procedure. The application of this technology in anti-aging technology is discussed with an emphasis on epigenetic changes during aging focusing on DNA methylation.

About the authors

Peter Hollands

, CTO Qigenix,

Author for correspondence.
Email: info@benthamscience.net

Todd Ovokaitys

, CEO Qigenix

Email: info@benthamscience.net

References

  1. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989; 5(3): 155-71. PMID: 2520283
  2. Thorley M, Malatras A, Duddy W, et al. Changes in communication between muscle stem cells and their environment with aging. J Neuromuscul Dis 2015; 2(3): 205-17. doi: 10.3233/JND-150097 PMID: 27858742
  3. Sameri S, Samadi P, Dehghan R, Salem E, Fayazi N, Amini R. Stem cell aging in lifespan and disease: A state-of-the-art review. Curr Stem Cell Res Ther 2020; 15(4): 362-78. doi: 10.2174/1574888X15666200213105155 PMID: 32053079
  4. Kasapoğlu I, Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology 2020; 161(2): bqaa001. doi: 10.1210/endocr/bqaa001 PMID: 31927571
  5. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell 2016; 166(4): 822-39. doi: 10.1016/j.cell.2016.07.050 PMID: 27518561
  6. Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2019; 20(1): 1-16. doi: 10.1007/s10522-018-9769-1 PMID: 30229407
  7. Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2018; 217(1): 51-63. doi: 10.1083/jcb.201709072 PMID: 29127110
  8. Niedernhofer LJ, Gurkar AU, Wang Y, Vijg J, Hoeijmakers JHJ, Robbins PD. Nuclear genomic instability and aging. Annu Rev Biochem 2018; 87(1): 295-322. doi: 10.1146/annurev-biochem-062917-012239 PMID: 29925262
  9. Ullrich NJ, Gordon LB. Hutchinson–Gilford progeria syndrome. Handb Clin Neurol 2015; 132: 249-64. doi: 10.1016/B978-0-444-62702-5.00018-4 PMID: 26564085
  10. Luxton JJ, Bailey SM. Twins, telomeres, and aging-in space! Plast Reconstr Surg 2021 January; 147(1S-2): 7S-14S. doi: 10.1097/PRS.0000000000007616 PMID: 33347069
  11. Nwanaji-Enwerem JC, Nwanaji-Enwerem U, Van Der Laan L, Galazka JM, Redeker NS, Cardenas A. A longitudinal epigenetic aging and leukocyte analysis of simulated space travel: The Mars-500 Mission. Cell Rep 2020; 33(10): 108406. doi: 10.1016/j.celrep.2020.108406 PMID: 33242403
  12. Sibonga JD. Spaceflight-induced bone loss: Is there an osteoporosis risk? Curr Osteoporos Rep 2013; 11(2): 92-8. doi: 10.1007/s11914-013-0136-5 PMID: 23564190
  13. Rittweger J, Gunga HC, Felsenberg D, Kirsch KA. Muscle and bone-aging and space. J Gravit Physiol 1999; 6(1): 133-6. PMID: 11542992
  14. Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol 2018; 15(3): 167-80. doi: 10.1038/nrcardio.2017.157 PMID: 29053152
  15. Nakamura-Ishizu A, Ito K, Suda T. Hematopoietic stem cell metabolism during development and aging. Dev Cell 2020; 54(2): 239-55. doi: 10.1016/j.devcel.2020.06.029 PMID: 32693057
  16. Morganti C, Ito K. Mitochondrial contributions to hematopoietic stem cell aging. Int J Mol Sci 2021; 22(20): 11117. doi: 10.3390/ijms222011117 PMID: 34681777
  17. Klepin HD. Myelodysplastic syndromes and acute myeloid leukemia in the elderly. Clin Geriatr Med 2016; 32(1): 155-73. doi: 10.1016/j.cger.2015.08.010 PMID: 26614866
  18. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217. doi: 10.1016/j.cell.2013.05.039 PMID: 23746838
  19. Fang EF, Lautrup S, Hou Y, et al. NAD+ in aging: Molecular mechanisms and translational implications. Trends Mol Med 2017; 23(10): 899-916. doi: 10.1016/j.molmed.2017.08.001 PMID: 28899755
  20. Chong A, Malavasi F, Israel S, et al. ADP ribosyl-cyclases (CD38/CD157), social skills and friendship. Psychoneuroendocrinology 2017; 78: 185-92. doi: 10.1016/j.psyneuen.2017.01.011 PMID: 28212520
  21. Jiang Y, Liu T, Lee CH, Chang Q, Yang J, Zhang Z. The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature 2020; 588(7839): 658-63. doi: 10.1038/s41586-020-2862-z PMID: 33053563
  22. Sambashivan S, Freeman MR. SARM1 signaling mechanisms in the injured nervous system. Curr Opin Neurobiol 2021; 69: 247-55. doi: 10.1016/j.conb.2021.05.004 PMID: 34175654
  23. Li N, Wang Y, Deng W, Lin SH. Poly (ADP-Ribose) Polymerases (PARPs) and PARP inhibitor-targeted therapeutics. Anticancer Agents Med Chem 2019; 19(2): 206-12. doi: 10.2174/1871520618666181109164645 PMID: 30417796
  24. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol 2014; 24(8): 464-71. doi: 10.1016/j.tcb.2014.04.002 PMID: 24786309
  25. Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab 2020; 2(1): 9-31. doi: 10.1038/s42255-019-0161-5 PMID: 32694684
  26. Lautrup S, Sinclair DA, Mattson MP, Fang EF. NAD+ in brain aging and neurodegenerative disorders. Cell Metab 2019; 30(4): 630-55. doi: 10.1016/j.cmet.2019.09.001 PMID: 31577933
  27. Yang B, Dan X, Hou Y, et al. NAD+ supplementation prevents STING‐induced senescence in ataxia telangiectasia by improving mitophagy. Aging Cell 2021; 20(4): e13329. doi: 10.1111/acel.13329 PMID: 33734555
  28. Okur MN, Mao B, Kimura R, et al. Short-term NAD+ supplementation prevents hearing loss in mouse models of Cockayne syndrome. NPJ Aging Mech Dis 2020; 6(1): 1-17. doi: 10.1038/s41514-019-0040-z PMID: 31934345
  29. Fang EF, Scheibye-Knudsen M, Brace LE, et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 2014; 157(4): 882-96. doi: 10.1016/j.cell.2014.03.026 PMID: 24813611
  30. Teslaa T, Teitell MA. Pluripotent stem cell energy metabolism: an update. EMBO J 2015; 34(2): 138-53. doi: 10.15252/embj.201490446 PMID: 25476451
  31. Lindauer M, Hochhaus A. Dasatinib. Recent Results Cancer Res 2018; 212: 29-68. doi: 10.1007/978-3-319-91439-8_2 PMID: 30069624
  32. Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: A review. Phytother Res 2021; 35(10): 5352-64. doi: 10.1002/ptr.7144 PMID: 34101925
  33. Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 2018; 36: 18-28. doi: 10.1016/j.ebiom.2018.09.015 PMID: 30279143
  34. Ogrodnik M, Zhu Y, Langhi LGP, et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab 2019; 29(5): 1061-1077.e8. doi: 10.1016/j.cmet.2018.12.008 PMID: 30612898
  35. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol 2017; 13(2): 77-89. doi: 10.1038/nrneph.2016.183 PMID: 28029153
  36. Palmer AK, Gustafson B, Kirkland J. L, Smith U. Cellular senescence: At the nexus between aging and diabetes. Diabetologia 2019; 62(10): 1835-41. doi: 10.1007/s00125-019-4934-x PMID: 31451866
  37. Martel J, Ojcius DM, Wu CY, et al. Emerging use of senolytics and senomorphics against aging and chronic diseases. Med Res Rev 2020; 40(6): 2114-31. doi: 10.1002/med.21702 PMID: 32578904
  38. Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother Res 2021; 35(3): 1230-6. doi: 10.1002/ptr.6887 PMID: 33034398
  39. Igelmann S, Lessard F, Uchenunu O, et al. A hydride transfer complex reprograms NAD metabolism and bypasses senescence. Mol Cell 2021; 81(18): 3848-3865.e19. doi: 10.1016/j.molcel.2021.08.028 PMID: 34547241
  40. Liu N, Wu YG, Lan GC, et al. Pyruvate prevents aging of mouse oocytes. Reproduction 2009; 138(2): 223-34. doi: 10.1530/REP-09-0122 PMID: 19465488
  41. Marín-Briggiler CI, Luque GM, Gervasi MG, et al. Human sperm remain motile after a temporary energy restriction but do not undergo capacitation-related events. Front Cell Dev Biol 2021; 9: 777086. doi: 10.3389/fcell.2021.777086 PMID: 34869380
  42. Xella S, Marsella T, Tagliasacchi D, et al. Embryo quality and implantation rate in two different culture media: ISM1 versus Universal IVF Medium. Fertil Steril 2010; 93(6): 1859-63. doi: 10.1016/j.fertnstert.2008.12.030 PMID: 19152877
  43. Zhou FQ. NAD+, senolytics, or pyruvate for healthy aging? Nutr Metab Insights 2021; 14: 11786388211053407. doi: 10.1177/11786388211053407 PMID: 34720589
  44. Zuccoli GS, Guest PC, Martins-de-Souza D. Effects on Glial Cell Glycolysis in Schizophrenia: An Advanced Aging Phenotype? Adv Exp Med Biol 2019; 1178: 25-38. doi: 10.1007/978-3-030-25650-0_2 PMID: 31493220
  45. Kim JY, Lee SH, Bae IH, et al. Pyruvate protects against cellular senescence through the control of mitochondrial and lysosomal function in dermal fibroblasts. J Invest Dermatol 2018; 138(12): 2522-30. doi: 10.1016/j.jid.2018.05.033 PMID: 29959907
  46. Park JT, Lee YS, Cho KA, Park SC. Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Ageing Res Rev 2018; 47: 176-82. doi: 10.1016/j.arr.2018.08.003 PMID: 30142381
  47. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78(1): 35-43. doi: 10.1016/0092-8674(94)90570-3 PMID: 7518356
  48. Brown EJ, Albers MW, Bum Shin T, et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 1994; 369(6483): 756-8. doi: 10.1038/369756a0 PMID: 8008069
  49. Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995; 270(2): 815-22. doi: 10.1074/jbc.270.2.815 PMID: 7822316
  50. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020; 21(4): 183-203. doi: 10.1038/s41580-019-0199-y PMID: 31937935
  51. Wolfson RL, Sabatini DM. The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metab 2017; 26(2): 301-9. doi: 10.1016/j.cmet.2017.07.001 PMID: 28768171
  52. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30(2): 214-26. doi: 10.1016/j.molcel.2008.03.003 PMID: 18439900
  53. Wu JJ, Liu J, Chen EB, et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep 2013; 4(5): 913-20.
  54. Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2009; 2(98): ra75. doi: 10.1126/scisignal.2000559 PMID: 19934433
  55. Yilmaz ÖH, Katajisto P, Lamming DW, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012; 486(7404): 490-5. doi: 10.1038/nature11163 PMID: 22722868
  56. Mannick JB, Morris M, Hockey HP, et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med 2018; 10(449): eaaq1564.
  57. Hambright WS, Philippon MJ, Huard J. Rapamycin for aging stem cells. Aging (Albany NY) 2020; 12(15): 15184-5. doi: 10.18632/aging.103816 PMID: 32756013
  58. Osman C, Jennings R, El-Ghariani K, Pinto A. Plasma exchange in neurological disease. Pract Neurol 2020; 20(2): 92-9. doi: 10.1136/practneurol-2019-002336 PMID: 31300488
  59. Boada M, Ramos-Fernández E, Guivernau B, et al. Treatment of Alzheimer disease using combination therapy with plasma exchange and haemapheresis with albumin and intravenous immunoglobulin: Rationale and treatment approach of the AMBAR (Alzheimer Management By Albumin Replacement) study. Neurologia 2016; 31(7): 473-81. doi: 10.1016/j.nrl.2014.02.003 PMID: 25023458
  60. Li X, Zhang J, Sun C, et al. Application of biological age assessment of Chinese population in potential anti-ageing technology. Immun Ageing 2018; 15(1): 33. doi: 10.1186/s12979-018-0140-9 PMID: 30574171
  61. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: Role of inflammation triggers and cytokines. Front Immunol 2018; 9: 586. doi: 10.3389/fimmu.2018.00586 PMID: 29686666
  62. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017; 39: 46-58. doi: 10.1016/j.arr.2016.10.005 PMID: 27810402
  63. Stekovic S, Hofer SJ, Tripolt N, et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab 2019; 30(3): 462-476.e6. doi: 10.1016/j.cmet.2019.07.016 PMID: 31471173
  64. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14(10): R115. doi: 10.1186/gb-2013-14-10-r115 PMID: 24138928
  65. Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013; 49(2): 359-67. doi: 10.1016/j.molcel.2012.10.016 PMID: 23177740
  66. Weidner C, Lin Q, Koch C, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 2014; 15(2): R24. doi: 10.1186/gb-2014-15-2-r24 PMID: 24490752
  67. Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018; 10(4): 573-91. doi: 10.18632/aging.101414 PMID: 29676998
  68. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 2018; 19(6): 371-84. doi: 10.1038/s41576-018-0004-3 PMID: 29643443
  69. Fuchs E, Chen T. A matter of life and death: Self‐renewal in stem cells. EMBO Rep 2013; 14(1): 39-48. doi: 10.1038/embor.2012.197 PMID: 23229591
  70. Fliedner TM. The role of blood stem cells in hematopoietic cell renewal. Stem Cells 1998; 16 (Suppl. 1): 13-29. doi: 10.1002/stem.5530160805 PMID: 11012145
  71. Steensma DP, Kyle RA. James Till and Ernest McCulloch: Hematopoietic stem cell discoverers. Mayo Clin Proc 2021; 96(3): 830-1. doi: 10.1016/j.mayocp.2021.01.016 PMID: 33673940
  72. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant 2011; 20(1): 5-14. doi: 10.3727/096368910X PMID: 21396235
  73. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 2017; 6(12): 2173-85. doi: 10.1002/sctm.17-0129 PMID: 29076267
  74. Campbell A, Brieva T, Raviv L, et al. Concise Review: Process development considerations for cell therapy. Stem Cells Transl Med 2015; 4(10): 1155-63. doi: 10.5966/sctm.2014-0294 PMID: 26315572
  75. Zarei F, Abbaszadeh A. Application of cell therapy for anti-aging facial skin. Curr Stem Cell Res Ther 2019; 14(3): 244-8. doi: 10.2174/1574888X13666181113113415 PMID: 30421684
  76. Lee BC, Yu KR. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep 2020; 53(2): 65-73. doi: 10.5483/BMBRep.2020.53.2.291 PMID: 31964472
  77. Neri S, Borzì R. Molecular mechanisms contributing to mesenchymal stromal cell aging. Biomolecules 2020; 10(2): 340. doi: 10.3390/biom10020340 PMID: 32098040
  78. Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 2018; 17(1): e12709. doi: 10.1111/acel.12709 PMID: 29210174
  79. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30(1): 255-89. doi: 10.1146/annurev-cellbio-101512-122326 PMID: 25288114
  80. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977. doi: 10.1126/science.aau6977 PMID: 32029601
  81. Ha DH, Kim H, Lee J, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells 2020; 9(5): 1157. doi: 10.3390/cells9051157 PMID: 32392899
  82. Yoshida M, Satoh A, Lin JB, et al. Extracellular vesicle-contained enampt delays aging and extends lifespan in mice. Cell Metab 2019; 30(2): 329-342.e5. doi: 10.1016/j.cmet.2019.05.015 PMID: 31204283
  83. Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 2019; 20(19): 4684. doi: 10.3390/ijms20194684 PMID: 31546622
  84. Hollands P, Aboyeji DR, Ovokaitys T. The action of modulated laser light on human very small embryonic-like (hVSEL) stem cells in Platelet Rich Plasma (PRP). Cell R 2020; 4(8): e2990.
  85. Ratajczak MZ, Ratajczak J, Suszynska M, Miller DM, Kucia M, Shin DM. A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circ Res 2017; 120(1): 166-78. doi: 10.1161/CIRCRESAHA.116.309362 PMID: 28057792
  86. Guerin CL, Blandinières A, Planquette B, et al. Very small embryonic-like stem cells are mobilized in human peripheral blood during hypoxemic COPD exacerbations and pulmonary hypertension. Stem Cell Rev 2017; 13(4): 561-6. doi: 10.1007/s12015-017-9732-6 PMID: 28285391
  87. Marlicz W, Zuba-Surma E, Kucia M, Blogowski W, Starzynska T, Ratajczak MZ. Various types of stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohnʼs disease. Inflamm Bowel Dis 2012; 18(9): 1711-22. doi: 10.1002/ibd.22875 PMID: 22238186
  88. Zuba-Surma EK, Wojakowski W, Ratajczak MZ, Dawn B. Very small embryonic-like stem cells: Biology and therapeutic potential for heart repair. Antioxid Redox Signal 2011; 15(7): 1821-34. doi: 10.1089/ars.2010.3817 PMID: 21194389
  89. Brindley J. A theoretical mechanism for the action of songmodulated laser light on human very small embryonic-like (hVSEL) stem cells in platelet rich plasma (PRP). CellR4 9 2021; e3201.
  90. Ovokaitys T. Intravenous SONG-modulated laser-activated allogeneic cord blood mesenchymal stem cells for the treatment of endstage heart failure: a preliminary clinical study. CellR4 9 2021; 2021: e3280.
  91. Zuba-Surma EK, Wu W, Ratajczak J, Kucia M, Ratajczak MZ. Very small embryonic-like stem cells in adult tissues—Potential implications for aging. Mech Ageing Dev 2009; 130(1-2): 58-66. doi: 10.1016/j.mad.2008.02.003 PMID: 18377952
  92. Ratajczak MZ, Liu R, Ratajczak J, Kucia M, Shin DM. The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differentiation 2011; 81(3): 153-61. doi: 10.1016/j.diff.2011.01.006 PMID: 21339038
  93. Galkowski D, Ratajczak MZ, Kocki J, Darzynkiewicz Z. Of cytometry, stem cells and fountain of youth. Stem Cell Rev 2017; 13(4): 465-81. doi: 10.1007/s12015-017-9733-5 PMID: 28364326
  94. Zhang W, Qu J, Liu GH, Belmonte JCI. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020; 21(3): 137-50. doi: 10.1038/s41580-019-0204-5 PMID: 32020082
  95. Topart C, Werner E, Arimondo PB. Wandering along the epigenetic timeline. Clin Epigenetics 2020; 12(1): 97. doi: 10.1186/s13148-020-00893-7 PMID: 32616071
  96. Marešová P, Mohelská H, Dolejš J, Kuča K. Socio-economic aspects of Alzheimer’s disease. Curr Alzheimer Res 2015; 12(9): 903-11. doi: 10.2174/156720501209151019111448 PMID: 26510983
  97. Braga DL, Mousovich-Neto F, Tonon-da-Silva G, Salgueiro WG, Mori MA. Epigenetic changes during ageing and their underlying mechanisms. Biogerontology 2020; 21(4): 423-43. doi: 10.1007/s10522-020-09874-y PMID: 32356238
  98. Asadi Shahmirzadi A, Edgar D, Liao CY, et al. Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab 2020; 32(3): 447-456.e6. doi: 10.1016/j.cmet.2020.08.004 PMID: 32877690
  99. Bhullar KS, Hubbard BP. Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1209-18. doi: 10.1016/j.bbadis.2015.01.012 PMID: 25640851
  100. Ros M, Carrascosa JM. Current nutritional and pharmacological anti-aging interventions. Biochim Biophys Acta Mol Basis Dis 2020; 1866(3): 165612. doi: 10.1016/j.bbadis.2019.165612 PMID: 31816437
  101. Piskovatska V, Storey KB, Vaiserman AM, Lushchak O. The use of metformin to increase the human healthspan. Adv Exp Med Biol 2020; 1260: 319-32. doi: 10.1007/978-3-030-42667-5_13 PMID: 32304040
  102. Bin-Jumah MN, Nadeem MS, Gilani SJ, et al. Genes and longevity of lifespan. Int J Mol Sci 2022; 23(3): 1499. doi: 10.3390/ijms23031499 PMID: 35163422

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers