The Beneficial Effects of Mesenchymal Stem Cells in Acute Kidney Injury: A Narrative Review


Cite item

Full Text

Abstract

Background:Acute kidney injury (AKI) is a multifaced disease characterized by a rapid decline in renal function. However, with growing insight into the pathophysiologic mechanisms of AKI, currently available interventions for AKI are merely supportive. Thus, novel therapies are urgently needed to improve the outcomes of patients with AKI. This narrative review aims to explore enhancing the beneficial effects of Mesenchymal Stem Cells(MSCs) in AKI.

Methods:The authors examined all studies regarding the role of MSCs in AKI. And the authors undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question. The most relevant and up-to-date research was included.

Results and Discussion:Based on encouraging preclinical results, stem cell therapy has been widely explored over the last decade. Among the various stem cell types investigated, mesenchymal stem cells are being intensely investigated by virtue of their numerous strengths, such as easy derivation, undemanding cell culture conditions, anti-apoptosis, immunomodulation, and anti-inflammation effects. Mounting evidence suggests that MSCs hold great potential in accelerating kidney repair following AKI in various preclinical models. Unfortunately, low engrafting efficiency and poor survival rate of injected MSCs in the injured renal tissue are major obstacles MSCs clinical application faces.

Conclusion:Various strategies, including genetic manipulation, mimicking the cellular microenvironment with different culture conditions, optimizing MSCs preparation and administration schedule, and screening patients who may more like benefit from MSCs therapy, have been developed to enhance the therapeutic potential of MSCs in AKI.

About the authors

Yuxiang Liu

Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital

Email: info@benthamscience.net

Jibin Han

Department of Critical Care Medicine, First Hospital of Shanxi Medical University

Email: info@benthamscience.net

Jingai Fang

Department of Nephrology, First Hospital of Shanxi Medical University,

Email: info@benthamscience.net

Rongshan Li

Department of Nephrology, Shanxi Provincial People's Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019; 394(10212): 1949-64. doi: 10.1016/S0140-6736(19)32563-2 PMID: 31777389
  2. Liangos O, Wald R, O’Bell JW, Price L, Pereira BJ, Jaber BL. Epidemiology and outcomes of acute renal failure in hospitalized patients: A national survey. Clin J Am Soc Nephrol 2006; 1(1): 43-51. doi: 10.2215/CJN.00220605 PMID: 17699189
  3. Hoste EAJ, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med 2015; 41(8): 1411-23. doi: 10.1007/s00134-015-3934-7 PMID: 26162677
  4. Forni LG, Darmon M, Ostermann M, et al. Renal recovery after acute kidney injury. Intensive Care Med 2017; 43(6): 855-66. doi: 10.1007/s00134-017-4809-x PMID: 28466146
  5. Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 2018; 14(10): 607-25. doi: 10.1038/s41581-018-0052-0 PMID: 30135570
  6. Lameire NH, Bagga A, Cruz D, et al. Acute kidney injury: An increasing global concern. Lancet 2013; 382(9887): 170-9. doi: 10.1016/S0140-6736(13)60647-9 PMID: 23727171
  7. Liu D, Cheng F, Pan S, Liu Z. Stem cells: A potential treatment option for kidney diseases. Stem Cell Res Ther 2020; 11(1): 249. doi: 10.1186/s13287-020-01751-2 PMID: 32586408
  8. de Almeida DC, Donizetti-Oliveira C, Barbosa-Costa P, Origassa CS, Câmara NO. In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. Clin Biochem Rev 2013; 34(3): 131-44. PMID: 24353358
  9. Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005; 289(1): F31-42. doi: 10.1152/ajprenal.00007.2005 PMID: 15713913
  10. Phinney DG, Pittenger MF. Concise Review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017; 35(4): 851-8. doi: 10.1002/stem.2575 PMID: 28294454
  11. Aghajani Nargesi A, Lerman LO, Eirin A. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: Current status and looming challenges. Stem Cell Res Ther 2017; 8(1): 273. doi: 10.1186/s13287-017-0727-7 PMID: 29202871
  12. Lange C, Tögel F, Ittrich H, et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 2005; 68(4): 1613-7. doi: 10.1111/j.1523-1755.2005.00573.x PMID: 16164638
  13. Peng X, Xu H, Zhou Y, et al. Human umbilical cord mesenchymal stem cells attenuate cisplatin-induced acute and chronic renal injury. Exp Biol Med 2013; 238(8): 960-70. doi: 10.1177/1477153513497176 PMID: 23970411
  14. Luo C, Zhang F, Zhang L, et al. Mesenchymal stem cells ameliorate sepsis-associated acute kidney injury in mice. Shock 2014; 41(2): 123-9. doi: 10.1097/SHK.0000000000000080 PMID: 24169208
  15. Tögel FE, Westenfelder C. Kidney protection and regeneration following acute injury: Progress through stem cell therapy. Am J Kidney Dis 2012; 60(6): 1012-22. doi: 10.1053/j.ajkd.2012.08.034 PMID: 23036928
  16. Swaminathan M, Stafford-Smith M, Chertow GM, et al. Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol 2018; 29(1): 260-7. doi: 10.1681/ASN.2016101150 PMID: 29038286
  17. Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise Review: MSC adhesion cascade—insights into homing and transendothelial migration. Stem Cells 2017; 35(6): 1446-60. doi: 10.1002/stem.2614 PMID: 28316123
  18. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell 2009; 4(3): 206-16. doi: 10.1016/j.stem.2009.02.001 PMID: 19265660
  19. Zhao L, Hu C, Zhang P, Jiang H, Chen J. Novel preconditioning strategies for enhancing the migratory ability of mesenchymal stem cells in acute kidney injury. Stem Cell Res Ther 2018; 9(1): 225. doi: 10.1186/s13287-018-0973-3 PMID: 30139368
  20. Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: Mechanisms and strategies for improvement. iScience 2019; 15: 421-38. doi: 10.1016/j.isci.2019.05.004 PMID: 31121468
  21. Liu N, Tian J, Cheng J, Zhang J. Migration of CXCR4 gene-modified bone marrow-derived mesenchymal stem cells to the acute injured kidney. J Cell Biochem 2013; 114(12): 2677-89. doi: 10.1002/jcb.24615 PMID: 23794207
  22. Liu N, Patzak A, Zhang J. CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. Am J Physiol Renal Physiol 2013; 305(7): F1064-73. doi: 10.1152/ajprenal.00178.2013 PMID: 23884141
  23. Si X, Liu X, Li J, Wu X. Transforming growth factor-β1 promotes homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury. Int J Clin Exp Pathol 2015; 8(10): 12368-78. PMID: 26722423
  24. Liu N, Wang H, Han G, Tian J, Hu W, Zhang J. Alleviation of apoptosis of bone marrow-derived mesenchymal stem cells in the acute injured kidney by heme oxygenase-1 gene modification. Int J Biochem Cell Biol 2015; 69: 85-94. doi: 10.1016/j.biocel.2015.10.007 PMID: 26456668
  25. Liu N, Wang H, Han G, Cheng J, Hu W, Zhang J. Enhanced proliferation and differentiation of HO-1 gene-modified bone marrow-derived mesenchymal stem cells in the acute injured kidney. Int J Mol Med 2018; 42(2): 946-56. doi: 10.3892/ijmm.2018.3670 PMID: 29749549
  26. Zhou S, Qiao Y, Liu Y, et al. Bone marrow derived mesenchymal stem cells pretreated with erythropoietin accelerate the repair of acute kidney injury. Cell Biosci 2020; 10(1): 130. doi: 10.1186/s13578-020-00492-2 PMID: 33292452
  27. Eliopoulos N, Zhao J, Forner K, Birman E, Young YK, Bouchentouf M. Erythropoietin gene-enhanced marrow mesenchymal stromal cells decrease cisplatin-induced kidney injury and improve survival of allogeneic mice. Mol Ther 2011; 19(11): 2072-83. doi: 10.1038/mt.2011.162 PMID: 21847101
  28. Liu N, Han G, Cheng J, Huang J, Tian J. Erythropoietin promotes the repair effect of acute kidney injury by bone-marrow mesenchymal stem cells transplantation. Exp Biol Med (Maywood) 2013; 238(6): 678-86. doi: 10.1177/1535370213489486 PMID: 23918879
  29. Hagiwara M, Shen B, Chao L, Chao J. Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther 2008; 19(8): 807-19. doi: 10.1089/hum.2008.016 PMID: 18554097
  30. Mohammadzadeh-Vardin M, Habibi Roudkenar M, Jahanian-Najafabadi A. Adenovirus-mediated over-expression of Nrf2 within mesenchymal Stem Cells (MSCs) protected rats against acute kidney injury. Adv Pharm Bull 2015; 5(2): 201-8. doi: 10.15171/apb.2015.028 PMID: 26236658
  31. Zhaleh F, Amiri F, Mohammadzadeh-Vardin M, et al. Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats. Iran J Basic Med Sci 2016; 19(3): 323-9. PMID: 27114803
  32. Zhang F, Wan X, Cao YZ, Sun D, Cao CC. Klotho gene-modified BMSCs showed elevated antifibrotic effects by inhibiting the Wnt/β-catenin pathway in kidneys after acute injury. Cell Biol Int 2018; 42(12): 1670-9. doi: 10.1002/cbin.11068 PMID: 30358003
  33. Xie LB, Chen X, Chen B, Wang XD, Jiang R, Lu YP. Protective effect of bone marrow mesenchymal stem cells modified with klotho on renal ischemia-reperfusion injury. Ren Fail 2019; 41(1): 175-82. doi: 10.1080/0886022X.2019.1588131 PMID: 30942135
  34. Sahan OB, Gunel-Ozcan A. Hepatocyte growth factor and insulin-like growth Factor-1 based cellular therapies for oxidative stress injury. Curr Stem Cell Res Ther 2021; 16(7): 771-91. doi: 10.2174/1574888X16999201124153753 PMID: 33238860
  35. Chen Y, Qian H, Zhu W, et al. Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev 2011; 20(1): 103-13. doi: 10.1089/scd.2009.0495 PMID: 20446811
  36. Tögel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 2007; 292(5): F1626-35. doi: 10.1152/ajprenal.00339.2006 PMID: 17213465
  37. Yuan L, Wu MJ, Sun HY, et al. VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2011; 300(1): F207-18. doi: 10.1152/ajprenal.00073.2010 PMID: 20943766
  38. Kamenický P, Mazziotti G, Lombès M, Giustina A, Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: Pathophysiological and clinical implications. Endocr Rev 2014; 35(2): 234-81. doi: 10.1210/er.2013-1071 PMID: 24423979
  39. Imberti B, Morigi M, Tomasoni S, et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 2007; 18(11): 2921-8. doi: 10.1681/ASN.2006121318 PMID: 17942965
  40. Liu P, Feng Y, Dong D, et al. Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep 2016; 6(1): 20287. doi: 10.1038/srep20287 PMID: 26830766
  41. Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2004; 15(12): 3073-82. doi: 10.1097/01.ASN.0000145013.44578.45 PMID: 15579510
  42. Roudkenar MH, Halabian R, Tehrani HA, et al. Lipocalin 2 enhances mesenchymal stem cell-based cell therapy in acute kidney injury rat model. Cytotechnology 2018; 70(1): 103-17. doi: 10.1007/s10616-017-0107-2 PMID: 28573544
  43. Islam D, Huang Y, Fanelli V, et al. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury. Am J Respir Crit Care Med 2019; 199(10): 1214-24. doi: 10.1164/rccm.201802-0356OC PMID: 30521764
  44. Freytes DO, Kang JW, Marcos-Campos I, Vunjak-Novakovic G. Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem 2013; 114(1): 220-9. doi: 10.1002/jcb.24357 PMID: 22903635
  45. Das R, Jahr H, van Osch GJVM, Farrell E. The role of hypoxia in bone marrow-derived mesenchymal stem cells: Considerations for regenerative medicine approaches. Tissue Eng Part B Rev 2010; 16(2): 159-68. doi: 10.1089/ten.teb.2009.0296 PMID: 19698058
  46. Cicione C, Muiños-López E, Hermida-Gómez T, Fuentes-Boquete I, Díaz-Prado S, Blanco FJ. Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int 2013; 2013: 1-11. doi: 10.1155/2013/232896 PMID: 24082888
  47. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: Influencing therapeutic potential by cellular pre-conditioning. Front Immunol 2018; 9: 2837. doi: 10.3389/fimmu.2018.02837 PMID: 30564236
  48. Hung SC, Pochampally RR, Hsu SC, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2007; 2(5): e416. doi: 10.1371/journal.pone.0000416 PMID: 17476338
  49. Palomäki S, Pietilä M, Laitinen S, et al. HIF-1α is upregulated in human mesenchymal stem cells. Stem Cells 2013; 31(9): 1902-9. doi: 10.1002/stem.1435 PMID: 23744828
  50. Yu X, Lu C, Liu H, et al. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 2013; 8(5): e62703. doi: 10.1371/journal.pone.0062703 PMID: 23671625
  51. Zhang W, Liu L, Huo Y, Yang Y, Wang Y. Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. BioMed Res Int 2014; 2014: 462472. doi: 10.1155/2014/462472 PMID: 25133162
  52. Ishiuchi N, Nakashima A, Doi S, et al. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res Ther 2020; 11(1): 130. doi: 10.1186/s13287-020-01642-6 PMID: 32197638
  53. Petrenko Y, Syková E, Kubinová Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res Ther 2017; 8(1): 94. doi: 10.1186/s13287-017-0558-6 PMID: 28446248
  54. Zhao X, Qiu X, Zhang Y, Zhang S, Gu X, Guo H. Three-dimensional aggregates enhance the therapeutic effects of adipose mesenchymal stem cells for ischemia-reperfusion induced kidney injury in rats. Stem Cells Int 2016; 2016: 9062638. doi: 10.1155/2016/9062638 PMID: 26649053
  55. Xu Y, Shi T, Xu A, Zhang L. 3D spheroid culture enhances survival and therapeutic capacities of MSC s injected into ischemic kidney. J Cell Mol Med 2016; 20(7): 1203-13. doi: 10.1111/jcmm.12651 PMID: 26914637
  56. Katsuno T, Ozaki T, Saka Y, et al. Low serum cultured adipose tissue-derived stromal cells ameliorate acute kidney injury in rats. Cell Transplant 2013; 22(2): 287-97. doi: 10.3727/096368912X655019 PMID: 22963874
  57. Valencia J, Blanco B, Yáñez R, et al. Comparative analysis of the immunomodulatory capacities of human bone marrow– and adipose tissue–derived mesenchymal stromal cells from the same donor. Cytotherapy 2016; 18(10): 1297-311. doi: 10.1016/j.jcyt.2016.07.006 PMID: 27637760
  58. Ketterl N, Brachtl G, Schuh C, et al. A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance. Stem Cell Res Ther 2015; 6(1): 236. doi: 10.1186/s13287-015-0233-8 PMID: 26620155
  59. Bloor AJC, Patel A, Griffin JE, et al. Production, safety and efficacy of iPSC-derived mesenchymal stromal cells in acute steroid-resistant graft versus host disease: a phase I, multicenter, open-label, dose-escalation study. Nat Med 2020; 26(11): 1720-5. doi: 10.1038/s41591-020-1050-x PMID: 32929265
  60. Chinnadurai R, Copland IB, Garcia MA, et al. Cryopreserved mesenchymal stromal cells are susceptible to T-Cell mediated apoptosis which is partly rescued by IFNγ licensing. Stem Cells 2016; 34(9): 2429-42. doi: 10.1002/stem.2415 PMID: 27299362
  61. Oja S, Kaartinen T, Ahti M, Korhonen M, Laitinen A, Nystedt J. The utilization of freezing steps in Mesenchymal Stromal Cell (MSC) manufacturing: Potential impact on quality and cell functionality attributes. Front Immunol 2019; 10: 1627. doi: 10.3389/fimmu.2019.01627 PMID: 31379832
  62. Moll G, Geißler S, Catar R, et al. Cryopreserved or fresh mesenchymal stromal cells: Only a matter of taste or key to unleash the full clinical potential of MSC therapy? Adv Exp Med Biol 2016; 951: 77-98. doi: 10.1007/978-3-319-45457-3_7 PMID: 27837556
  63. Giri J, Galipeau J. Mesenchymal stromal cell therapeutic potency is dependent upon viability, route of delivery, and immune match. Blood Adv 2020; 4(9): 1987-97. doi: 10.1182/bloodadvances.2020001711 PMID: 32384543
  64. Wagner W, Horn P, Castoldi M, et al. Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One 2008; 3(5): e2213. doi: 10.1371/journal.pone.0002213 PMID: 18493317
  65. Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol 2018; 14(4): 217-30. doi: 10.1038/nrneph.2017.184 PMID: 29355173
  66. Ostermann M, Wu V, Sokolov D, Lumlertgul N. Definitions of acute renal dysfunction: An evolving clinical and biomarker paradigm. Curr Opin Crit Care 2021; 27(6): 553-9. doi: 10.1097/MCC.0000000000000886 PMID: 34535002
  67. Endre ZH, Mehta RL. Identification of acute kidney injury subphenotypes. Curr Opin Crit Care 2020; 26(6): 519-24. doi: 10.1097/MCC.0000000000000772 PMID: 33044239
  68. Fukumitsu M, Suzuki K. Mesenchymal stem/stromal cell therapy for pulmonary arterial hypertension: Comprehensive review of preclinical studies. J Cardiol 2019; 74(4): 304-12. doi: 10.1016/j.jjcc.2019.04.006 PMID: 31109735
  69. Preda MB, Lupan AM, Neculachi CA, et al. Evidence of mesenchymal stromal cell adaptation to local microenvironment following subcutaneous transplantation. J Cell Mol Med 2020; 24(18): 10889-97. doi: 10.1111/jcmm.15717 PMID: 32785979
  70. Chen Y, Hu Y, Zhou X, et al. Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell Tissue Res 2022; 388(3): 549-63. doi: 10.1007/s00441-022-03616-x PMID: 35347409

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers