Mesenchymal Stem Cell-derived Type II Alveolar Epithelial Progenitor Cells Attenuate LPS-induced Acute Lung Injury and Reduce P63 Expression


Cite item

Full Text

Abstract

Aim:Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe clinical respiratory-failure disease mainly characterized by acute damage to the alveolar epithelium and pulmonary vascular endothelial cells. Stem cell therapy has emerged as a potential regenerative strategy for ARDS/ALI, however, the outcome is limited, and the underlying mechanisms are unclear.

Introduction:We established a differentiation system for bone marrow-derived mesenchymal stem cellderived (BM-MSC) type II alveolar epithelial progenitor cells (AECIIs) and assessed their regulatory effects on lipopolysaccharide (LPS)-induced ALI.

Methods:We induced BM-MSC differentiation into AECIIs using a specific conditioned medium. After 26 days of differentiation, 3×105 BM-MSC-AECIIs were used to treat mice with LPS-induced ALI through tracheal injection.

Results:After tracheal injection, BM-MSC-AECIIs migrated to the perialveolar area and reduced LPSinduced lung inflammation and pathological injury. RNA-seq suggested that P63 protein was involved in the effects of BM-MSC-AECIIs on lung inflammation.

Conclusion:Our results suggest that BM-MSC-AECIIs may reduce LPS-induced acute lung injury by decreasing P63 expression.

About the authors

Ning Ma

Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Mengwei Zhang

Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Guofeng Xu

Inflammation & Allergic Diseases Research Uni, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Lifang Zhang

Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Min Luo

Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Meihua Luo

Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Xing Wang

Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Hongmei Tang

Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Xiaoyun Wang

Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Li Liu

Laboratory of Anesthesiology, Southwest Medical University

Email: info@benthamscience.net

Xiaolin Zhong

Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Jianguo Feng

Laboratory of Anesthesiology, Southwest Medical University

Email: info@benthamscience.net

Yuying Li

Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lewandowski K. Epidemiological data challenge ARDS/ALI definition. Intensive Care Med 1999; 25(9): 884-6. doi: 10.1007/s001340050974 PMID: 10501737
  2. Dos Santos CC. Advances in mechanisms of repair and remodelling in acute lung injury. Intensive Care Med 2008; 34(4): 619-30. doi: 10.1007/s00134-007-0963-x PMID: 18264692
  3. McVey M, Tabuchi A, Kuebler WM. Microparticles and acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303(5): L364-81. doi: 10.1152/ajplung.00354.2011 PMID: 22728467
  4. Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol 2020; 11: 1722. doi: 10.3389/fimmu.2020.01722 PMID: 32849610
  5. Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial damage in acute respiratory distress syndrome. Int J Mol Sci 2020; 21(22): 8793. doi: 10.3390/ijms21228793 PMID: 33233715
  6. Torres Acosta MA, Singer BD. Pathogenesis of COVID-19-induced ARDS: Implications for an ageing population. Eur Respir J 2020; 56(3): 2002049. doi: 10.1183/13993003.02049-2020 PMID: 32747391
  7. Ruaro B, Salton F, Braga L, et al. The history and mystery of alveolar epithelial type II cells: Focus on their physiologic and pathologic role in lung. Int J Mol Sci 2021; 22(5): 2566. doi: 10.3390/ijms22052566 PMID: 33806395
  8. Guillot L, Nathan N, Tabary O, et al. Alveolar epithelial cells: Master regulators of lung homeostasis. Int J Biochem Cell Biol 2013; 45(11): 2568-73. doi: 10.1016/j.biocel.2013.08.009 PMID: 23988571
  9. Corvol H, Flamein F, Epaud R, Clement A, Guillot L. Lung alveolar epithelium and interstitial lung disease. Int J Biochem Cell Biol 2009; 41(8-9): 1643-51. doi: 10.1016/j.biocel.2009.02.009 PMID: 19433305
  10. Guillamat-Prats R, Puig F, Camprubí-Rimblas M, et al. Intratracheal instillation of alveolar type II cells enhances recovery from acute lung injury in rats. J Heart Lung Transplant 2018; 37(6): 782-91. doi: 10.1016/j.healun.2017.10.025 PMID: 29229270
  11. Wang Y, Tang Z, Huang H, et al. Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proc Natl Acad Sci 2018; 115(10): 2407-12. doi: 10.1073/pnas.1719474115 PMID: 29463737
  12. Kathiriya JJ, Brumwell AN, Jackson JR, Tang X, Chapman HA. Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration. Cell Stem Cell 2020; 26(3): 346-358.e4. doi: 10.1016/j.stem.2019.12.014 PMID: 31978363
  13. Aspal M, Zemans RL. Mechanisms of ATII-to-ATI Cell Differentiation during Lung Regeneration. Int J Mol Sci 2020; 21(9): 3188. doi: 10.3390/ijms21093188 PMID: 32366033
  14. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 2018; 359(6380): 1118-23. doi: 10.1126/science.aam6603 PMID: 29420258
  15. Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 2013; 123(7): 3025-36. doi: 10.1172/JCI68782 PMID: 23921127
  16. Guillamat-Prats R, Camprubí-Rimblas M, Puig F, et al. Alveolar type II cells or mesenchymal stem cells: Comparison of two different cell therapies for the treatment of acute lung injury in rats. Cells 2020; 9(8): 1816. doi: 10.3390/cells9081816 PMID: 32751857
  17. Hayes M, Curley G, Ansari B, Laffey JG. Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype? Crit Care 2012; 16(2): 205. doi: 10.1186/cc10570 PMID: 22424108
  18. Chin JY, Koh Y, Joung KM, et al. The effects of hypothermia on endotoxin-primed lung. Anesth Analg 2007; 104(5): 1171-8. doi: 10.1213/01.ane.0000260316.95836.1c PMID: 17456669
  19. Yang C, Jiang J, Yang X, Wang H, Du J. Stem/progenitor cells in endogenous repairing responses: New toolbox for the treatment of acute lung injury. J Transl Med 2016; 14(1): 47. doi: 10.1186/s12967-016-0804-1 PMID: 26865361
  20. Monsel A, Zhu Y, Gennai S, Hao Q, Liu J, Lee JW. Cell-based therapy for acute organ injury: Preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology 2014; 121(5): 1099-121. doi: 10.1097/ALN.0000000000000446 PMID: 25211170
  21. Serati-Nouri H, Rasoulpoor S, Pourpirali R, et al. In vitro expansion of human adipose-derived stem cells with delayed senescence through dual stage release of curcumin from mesoporous silica nanoparticles/electrospun nanofibers. Life Sci 2021; 285: 119947. doi: 10.1016/j.lfs.2021.119947 PMID: 34530016
  22. Fernández-Francos S, Eiro N, González-Galiano N, Vizoso FJ. Mesenchymal stem cell-based therapy as an alternative to the treatment of acute respiratory distress syndrome: Current evidence and future perspectives. Int J Mol Sci 2021; 22(15): 7850. doi: 10.3390/ijms22157850 PMID: 34360616
  23. Liu J, Peng D, You J, et al. Type 2 alveolar epithelial cells differentiated from human umbilical cord mesenchymal stem cells alleviate mouse pulmonary fibrosis through β-catenin-regulated cell apoptosis. Stem Cells Dev 2021; 30(13): 660-70. doi: 10.1089/scd.2020.0208 PMID: 33899513
  24. Luca TYH, Sampada K, Marco PA, et al. Generation of an alveolar epithelial type II cell line from induced pluripotent stem cells. AM J PHYSIOL-LUNG C 2018; 315(6): L921-32.
  25. Shafa M, Ionescu LI, Vadivel A, et al. Human induced pluripotent stem cell–derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-induced lung injury. Cytotherapy 2018; 20(1): 108-25. doi: 10.1016/j.jcyt.2017.09.003 PMID: 29056548
  26. El Agha E, Kramann R, Schneider RK, et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 2017; 21(2): 166-77. doi: 10.1016/j.stem.2017.07.011 PMID: 28777943
  27. Yasamineh S, Kalajahi HG, Yasamineh P, et al. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19. Stem Cell Res Ther 2022; 13(1): 257. doi: 10.1186/s13287-022-02944-7 PMID: 35715852
  28. Zhang L, Guo K, Yin S, et al. RNA-Seq reveals underlying transcriptomic mechanisms of bone marrow-derived mesenchymal stem cells in the regulation of microglia-mediated neuroinflammation after subarachnoid hemorrhage. Stem Cells Dev 2020; 29(9): 562-73. doi: 10.1089/scd.2019.0216 PMID: 31918626
  29. Aziz M, Ode Y, Zhou M, et al. B-1a cells protect mice from sepsis-induced acute lung injury. Mol Med 2018; 24(1): 26. doi: 10.1186/s10020-018-0029-2 PMID: 30134811
  30. Barratt S, Creamer A, Hayton C, Chaudhuri N. Idiopathic pulmonary fibrosis (IPF): An overview. J Clin Med 2018; 7(8): 201. doi: 10.3390/jcm7080201 PMID: 30082599
  31. Clerici C, Planès C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 296(3): L267-74. doi: 10.1152/ajplung.90528.2008 PMID: 19118091
  32. Chen L, Qu J, Kalyani FS, et al. Mesenchymal stem cell-based treatments for COVID-19: Status and future perspectives for clinical applications. Cell Mol Life Sci 2022; 79(3): 142. doi: 10.1007/s00018-021-04096-y PMID: 35187617
  33. Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir Med 2015; 3(1): 24-32. doi: 10.1016/S2213-2600(14)70291-7 PMID: 25529339
  34. Zhang H, Cui Y, Zhou Z, Ding Y, Nie H. Alveolar type 2 epithelial cells as potential therapeutics for acute lung injury/acute respiratory distress syndrome. Curr Pharm Des 2020; 25(46): 4877-82. doi: 10.2174/1381612825666191204092456 PMID: 31801451
  35. Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 2010; 18(3): 625-34. doi: 10.1038/mt.2009.317 PMID: 20087316
  36. Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, Nouri M. Emerging importance of phytochemicals in regulation of stem cells fate via signaling pathways. Phytother Res 2017; 31(11): 1651-68. doi: 10.1002/ptr.5908 PMID: 28857315
  37. Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 family of transcription factors: Overlapping and distinct functions. J Cell Sci 2000; 113(10): 1661-70. doi: 10.1242/jcs.113.10.1661 PMID: 10769197
  38. Karsli Uzunbas G, Ahmed F, Sammons MA. Control of p53-dependent transcription and enhancer activity by the p53 family member p63. J Biol Chem 2019; 294(27): 10720-36. doi: 10.1074/jbc.RA119.007965 PMID: 31113863
  39. Fisher ML, Balinth S, Mills AA. p63-related signaling at a glance. J Cell Sci 2020; 133(17): jcs228015. doi: 10.1242/jcs.228015 PMID: 32917730
  40. Moses MA, George AL, Sakakibara N, et al. Molecular mechanisms of p63-mediated squamous cancer pathogenesis. Int J Mol Sci 2019; 20(14): 3590. doi: 10.3390/ijms20143590 PMID: 31340447
  41. Kumar PA, Hu Y, Yamamoto Y, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 2011; 147(3): 525-38. doi: 10.1016/j.cell.2011.10.001 PMID: 22036562
  42. Vaughan AE, Brumwell AN, Xi Y, et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 2015; 517(7536): 621-5. doi: 10.1038/nature14112 PMID: 25533958
  43. Zuo W, Zhang T, Wu DZA, et al. p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature 2015; 517(7536): 616-20. doi: 10.1038/nature13903 PMID: 25383540
  44. Chapman HA, Li X, Alexander JP, et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest 2011; 121(7): 2855-62. doi: 10.1172/JCI57673 PMID: 21701069
  45. Weiner AI, Zhao G, Zayas HM, et al. ΔNp63 drives dysplastic alveolar remodeling and restricts epithelial plasticity upon severe lung injury. Cell Rep 2022; 41(11): 111805. doi: 10.1016/j.celrep.2022.111805 PMID: 36516758

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers