Computational Methods for Functional Characterization of lncRNAS in Human Diseases: A Focus on Co-Expression Networks
- Authors: Jha P.1, Barbeiro M.1, Lupieri A.1, Aikawa E.1, Uchida S.2, Aikawa M.1
-
Affiliations:
- Center for Excellence in Vascular Biology, Harvard Medical School
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University
- Issue: Vol 19, No 1 (2024)
- Pages: 21-38
- Section: Life Sciences
- URL: https://jdigitaldiagnostics.com/1574-8936/article/view/643713
- DOI: https://doi.org/10.2174/1574893618666230727103257
- ID: 643713
Cite item
Full Text
Abstract
Treatment of many human diseases involves small-molecule drugs.Some target proteins, however, are not druggable with traditional strategies. Innovative RNA-targeted therapeutics may overcome such a challenge. Long noncoding RNAs (lncRNAs) are transcribed RNAs that do not translate into proteins. Their ability to interact with DNA, RNA, microRNAs (miRNAs), and proteins makes them an interesting target for regulating gene expression and signaling pathways.In the past decade, a catalog of lncRNAs has been studied in several human diseases. One of the challenges with lncRNA studies include their lack of coding potential, making, it difficult to characterize them in wet-lab experiments functionally. Several computational tools have thus been designed to characterize functions of lncRNAs centered around lncRNA interaction with proteins and RNA, especially miRNAs. This review comprehensively summarizes the methods and tools for lncRNA-RNA interactions and lncRNA-protein interaction prediction.We discuss the tools related to lncRNA interaction prediction using commonlyused models: ensemble-based, machine-learning-based, molecular-docking and network-based computational models. In biology, two or more genes co-expressed tend to have similar functions. Coexpression network analysis is, therefore, one of the most widely-used methods for understanding the function of lncRNAs. A major focus of our study is to compile literature related to the functional prediction of lncRNAs in human diseases using co-expression network analysis. In summary, this article provides relevant information on the use of appropriate computational tools for the functional characterization of lncRNAs that help wet-lab researchers design mechanistic and functional experiments.
About the authors
Prabhash Jha
Center for Excellence in Vascular Biology, Harvard Medical School
Email: info@benthamscience.net
Miguel Barbeiro
Center for Excellence in Vascular Biology, Harvard Medical School
Email: info@benthamscience.net
Adrien Lupieri
Center for Excellence in Vascular Biology, Harvard Medical School
Email: info@benthamscience.net
Elena Aikawa
Center for Excellence in Vascular Biology, Harvard Medical School
Email: info@benthamscience.net
Shizuka Uchida
Center for RNA Medicine, Department of Clinical Medicine, Aalborg University
Email: info@benthamscience.net
Masanori Aikawa
Center for Excellence in Vascular Biology, Harvard Medical School
Author for correspondence.
Email: info@benthamscience.net
References
- Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers 2017; 2017: 1-14. doi: 10.1155/2017/7243968 PMID: 28634418
- Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 2017; 120(2): 381-99. doi: 10.1161/CIRCRESAHA.116.308434 PMID: 28104771
- Cen D, Huang H, Yang L, Guo K, Zhang J. Long noncoding RNA STXBP5-AS1 inhibits cell proliferation, migration, and invasion through inhibiting the PI3K/AKT signaling pathway in gastric cancer cells. OncoTargets Ther 2019; 12: 1929-36. doi: 10.2147/OTT.S194463 PMID: 30881044
- Wright MW, Bruford EA. Naming junk: Human non-protein coding RNA (ncRNA) gene nomenclature. Hum Genomics 2011; 5(2): 90-8. doi: 10.1186/1479-7364-5-2-90 PMID: 21296742
- Kornfeld JW, Brüning JC. Regulation of metabolism by long, non-coding RNAs. Front Genet 2014; 5: 57. doi: 10.3389/fgene.2014.00057 PMID: 24723937
- Gu J, Xu F, Dang Y, Bu X. Long non-coding RNA 001089 is a prognostic marker and inhibits glioma cells proliferation and invasion. Clin Lab 2019; 65(03/2019) doi: 10.7754/Clin.Lab.2018.180817 PMID: 30868865
- Jha PK, Vijay A, Prabhakar A, et al. Transcriptome profiling reveals the endogenous sponging role of LINC00659 and UST-AS1 in high-altitude induced thrombosis. Thromb Haemost 2021; 121(11): 1497-511. doi: 10.1055/a-1390-1713 PMID: 33580494
- Qi M, Yu B, Yu H, Li F. Integrated analysis of a ceRNA network reveals potential prognostic lncRNAs in gastric cancer. Cancer Med 2020; 9(5): 1798-817. doi: 10.1002/cam4.2760 PMID: 31923354
- Umu SU, Gardner PP. A comprehensive benchmark of RNARNA interaction prediction tools for all domains of life. Bioinformatics 2017; 33(7): 988-96. doi: 10.1093/bioinformatics/btw728 PMID: 27993777
- Wenzel A, Akbaşli E, Gorodkin J. RIsearch: fast RNARNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics 2012; 28(21): 2738-46. doi: 10.1093/bioinformatics/bts519 PMID: 22923300
- Seemann SE, Richter AS, Gesell T, Backofen R, Gorodkin J. PETcofold: Predicting conserved interactions and structures of two multiple alignments of RNA sequences. Bioinformatics 2011; 27(2): 211-9. doi: 10.1093/bioinformatics/btq634 PMID: 21088024
- Wekesa JS, Meng J, Luan Y. A deep learning model for plant lncRNA-protein interaction prediction with graph attention. Mol Genet Genomics 2020; 295(5): 1091-102. doi: 10.1007/s00438-020-01682-w PMID: 32409904
- Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003; 302(5643): 249-55. doi: 10.1126/science.1087447 PMID: 12934013
- Weirauch MT. Gene Coexpression Networks for the Analysis of DNA Microarray Data. Applied Statistics for Network Biology. Wiley oneline library. 2011; pp. 215-50. Available from: https://onlinelibrary.wiley.com/doi/10.1002/9783527638079.ch11. doi: 10.1002/9783527638079.ch11
- Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005; 4(17) doi: 10.2202/1544-6115.1128
- Zhang Z, Salisbury D, Sallam T. Long noncoding RNAs in atherosclerosis. J Am Coll Cardiol 2018; 72(19): 2380-90. doi: 10.1016/j.jacc.2018.08.2161 PMID: 30384894
- Bian W, Jing X, Yang Z, et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. Aging 2020; 12(7): 6385-400. doi: 10.18632/aging.103034 PMID: 32267831
- Pan JX. LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur Rev Med Pharmacol Sci 2017; 21(2): 322-8. PMID: 28165553
- Simion V, Zhou H, Haemmig S, et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat Commun 2020; 11(1): 6135. doi: 10.1038/s41467-020-19664-2 PMID: 33262333
- Simion V, Zhou H, Pierce JB, et al. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight 2020; 5(21): e140627. doi: 10.1172/jci.insight.140627 PMID: 33021969
- Bai J, Liu J, Fu Z, et al. Silencing lncRNA AK136714 reduces endothelial cell damage and inhibits atherosclerosis. Aging 2021; 13(10): 14159-69. doi: 10.18632/aging.203031 PMID: 34015766
- Guo FX, Wu Q, Li P, et al. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ 2019; 26(9): 1670-87. doi: 10.1038/s41418-018-0235-z PMID: 30683918
- Yu XH, Deng WY, Chen JJ, et al. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death Dis 2020; 11(12): 1043. doi: 10.1038/s41419-020-03263-6 PMID: 33293505
- Ward Z, Schmeier S, Saddic L, et al. Novel and annotated long noncoding RNAs associated with ischemia in the human heart. Int J Mol Sci 2021; 22(21): 11324. doi: 10.3390/ijms222111324 PMID: 34768754
- Wang L, Hu J, Zhou J, Guo F, Yao T, Zhang L. Weighed gene coexpression network analysis screens the potential long noncoding RNAs and genes associated with progression of coronary artery disease. Comput Math Methods Med 2020; 2020: 1-14. doi: 10.1155/2020/8183420 PMID: 32695216
- Yin X, Wang P, Yang T, et al. Identification of key modules and genes associated with breast cancer prognosis using WGCNA and ceRNA network analysis. Aging 2021; 13(2): 2519-38. doi: 10.18632/aging.202285 PMID: 33318294
- Li H, Liu L, Huang T, et al. Establishment of a novel ferroptosis-related lncRNA pair prognostic model in colon adenocarcinoma. Aging 2021; 13(19): 23072-95. doi: 10.18632/aging.203599 PMID: 34610581
- Han C, Zhang C, Wang H, Li K, Zhao L. Angiogenesis-related lncRNAs predict the prognosis signature of stomach adenocarcinoma. BMC Cancer 2021; 21(1): 1312. doi: 10.1186/s12885-021-08987-y PMID: 34876056
- Wang W, Lou W, Ding B, et al. A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging 2019; 11(9): 2610-27. doi: 10.18632/aging.101933 PMID: 31061236
- Zhou X, Dou M, Liu Z, et al. Screening prognosis-related lncRNAs based on WGCNA to establish a new risk score for predicting prognosis in patients with hepatocellular carcinoma. J Immunol Res 2021; 2021: 1-20. doi: 10.1155/2021/5518908 PMID: 34426790
- He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther 2021; 15: 3965-78. doi: 10.2147/DDDT.S332847 PMID: 34566408
- Huang A, Li T, Xie X, Xia J. Computational identification of immune- and ferroptosis-related LncRNA signature for prognosis of hepatocellular carcinoma. Front Mol Biosci 2021; 8: 759173. doi: 10.3389/fmolb.2021.759173 PMID: 34901153
- Zhang Y, Zhu B, He M, et al. N6-methylandenosine-related lncrnas predict prognosis and immunotherapy response in bladder cancer. Front Oncol 2021; 11: 710767. doi: 10.3389/fonc.2021.710767 PMID: 34458149
- Zheng J, Guo J, Zhu L, Zhou Y, Tong J. Comprehensive analyses of glycolysis-related lncRNAs for ovarian cancer patients. J Ovarian Res 2021; 14(1): 124. doi: 10.1186/s13048-021-00881-2 PMID: 34560889
- Cheng Y, Su Y, Wang S, et al. Identification of circRNA-lncRNA-miRNA-mRNA competitive endogenous rna network as novel prognostic markers for acute myeloid leukemia. Genes 2020; 11(8): 868. doi: 10.3390/genes11080868 PMID: 32751923
- Tu Z, Wu L, Wang P, et al. N6-Methylandenosine-related lncRNAs are potential biomarkers for predicting the overall survival of lower-grade glioma patients. Front Cell Dev Biol 2020; 8: 642. doi: 10.3389/fcell.2020.00642 PMID: 32793593
- He Y, Ye Y, Tian W, Qiu H. A novel lncRNA panel related to ferroptosis, tumor progression, and microenvironment is a robust prognostic indicator for glioma patients. Front Cell Dev Biol 2021; 9: 788451. doi: 10.3389/fcell.2021.788451 PMID: 34950662
- Zhao J, Su Y, Jiao J, et al. Identification of lncRNA and mRNA biomarkers in osteoarthritic degenerative meniscus by weighted gene coexpression network and competing endogenous RNA network analysis. BioMed Res Int 2020; 2020: 1-10. doi: 10.1155/2020/2123787 PMID: 32685450
- Wang Q, Roy B, Dwivedi Y. Co-expression network modeling identifies key long non-coding RNA and mRNA modules in altering molecular phenotype to develop stress-induced depression in rats. Transl Psychiatry 2019; 9(1): 125. doi: 10.1038/s41398-019-0448-z PMID: 30944317
- Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struct Biol 1996; 6(3): 402-6. doi: 10.1016/S0959-440X(96)80061-3 PMID: 8804827
- Suravajhala R, Gupta S, Kumar N, Suravajhala P. Deciphering LncRNAprotein interactions using docking complexes. J Biomol Struct Dyn 2022; 40(8): 3769-76. doi: 10.1080/07391102.2020.1850354 PMID: 33280525
- Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 2003; 32(1): 335-73. doi: 10.1146/annurev.biophys.32.110601.142532 PMID: 12574069
- Liu X, Bai X, Liu H, et al. LncRNA LOC105378097 inhibits cardiac mitophagy in natural ageing mice. Clin Transl Med 2022; 12(6): e908. doi: 10.1002/ctm2.908 PMID: 35758595
- Gao X, Zhang W, Jia Y, Xu H, Zhu Y, Pei X. Identification of a prognosis-related ceRNA network in cholangiocarcinoma and potentially therapeutic molecules using a bioinformatic approach and molecular docking. Sci Rep 2022; 12(1): 16247. doi: 10.1038/s41598-022-20362-w PMID: 36171401
- Zheng J, Hong X, Xie J, Tong X, Liu S. P3DOCK: a proteinRNA docking webserver based on template-based and template-free docking. Bioinformatics 2020; 36(1): 96-103. doi: 10.1093/bioinformatics/btz478 PMID: 31173056
- Cheng TMK, Blundell TL, Fernandez-Recio J. pyDock: Electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 2007; 68(2): 503-15. doi: 10.1002/prot.21419 PMID: 17444519
- Venables WN, Ripley BD. Tree-based Methods Modern Applied Statistics with S-PLUS. New York, NY: Springer 1999; pp. 303-27. doi: 10.1007/978-1-4757-3121-7_10
- James G, Witten D, Hastie T, Tibshirani R. Tree-Based Methods An Introduction to Statistical Learning: with Applications in R. New York, NY: Springer 2021; pp. 327-65. doi: 10.1007/978-1-0716-1418-1_8
- Breslow LA, Aha DW. Simplifying decision trees: A survey. Knowl Eng Rev 1997; 12(1): 1-40. doi: 10.1017/S0269888997000015
- Cutler A, Cutler DR, Stevens JR. Tree-based methods. In: Li X, Xu R, Eds. High-Dimensional Data Analysis in Cancer Research. New York, NY: Springer 2009; pp. 1-19. doi: 10.1007/978-0-387-69765-9_5
- Peng L, Yuan R, Shen L, Gao P, Zhou L. LPI-EnEDT: An ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification. BioData Min 2021; 14(1): 50. doi: 10.1186/s13040-021-00277-4 PMID: 34861891
- Shen C, Li H, Li M, et al. DLRAPom: A hybrid pipeline of Optimized XGBoost-guided integrative multiomics analysis for identifying targetable disease-related lncRNAmiRNAmRNA regulatory axes. Brief Bioinform 2022; 23(2): bbac046. doi: 10.1093/bib/bbac046 PMID: 35224615
- Zhou L, Wang Z, Tian X, Peng L. LPI-deepGBDT: A multiple-layer deep framework based on gradient boosting decision trees for lncRNAprotein interaction identification. BMC Bioinformatics 2021; 22(1): 479. doi: 10.1186/s12859-021-04399-8 PMID: 34607567
- Li J, Zhao Y, Zhou S, Zhou Y, Lang L. Inferring lncRNA functional similarity based on integrating heterogeneous network data. Front Bioeng Biotechnol 2020; 8: 27. doi: 10.3389/fbioe.2020.00027 PMID: 32117916
- Newman M. Networks: An Introduction. Oxford, England: Oxford University Press 2010.
- Bass JIF, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJM. Using networks to measure similarity between genes: association index selection. Nat Methods 2013; 10(12): 1169-76. doi: 10.1038/nmeth.2728 PMID: 24296474
- Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One 2009; 4(2): e4345. doi: 10.1371/journal.pone.0004345 PMID: 19190775
- Liao J, Wang J, Liu Y, Li J, Duan L. Transcriptome sequencing of lncRNA, miRNA, mRNA and interaction network constructing in coronary heart disease. BMC Med Genomics 2019; 12(1): 124. doi: 10.1186/s12920-019-0570-z PMID: 31443660
- Bian W, Jiang XX, Wang Z, et al. Comprehensive analysis of the ceRNA network in coronary artery disease. Sci Rep 2021; 11(1): 24279. doi: 10.1038/s41598-021-03688-9 PMID: 34930980
- Xu M, Chen Y, Lu W, et al. SPMLMI: Predicting lncRNAmiRNA interactions in humans using a structural perturbation method. PeerJ 2021; 9: e11426. doi: 10.7717/peerj.11426 PMID: 34055486
- Sun X, Cheng L, Liu J, Xie C, Yang J, Li F. Predicting lncRNAprotein interaction with weighted graph-regularized matrix factorization. Front Genet 2021; 12: 690096. doi: 10.3389/fgene.2021.690096 PMID: 34335693
- Iyer G, Chanussot J, Bertozzi AL. A graph-based approach for data fusion and segmentation of multimodal images. IEEE Trans Geosci Remote Sens 2021; 59(5): 4419-29. doi: 10.1109/TGRS.2020.2971395
- Xuan P, Pan S, Zhang T, Liu Y, Sun H. Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations. Cells 2019; 8(9): 1012. doi: 10.3390/cells8091012 PMID: 31480350
- Zhang J, Jiang Z, Hu X, Song B. A novel graph attention adversarial network for predicting disease-related associations. Methods 2020; 179: 81-8. doi: 10.1016/j.ymeth.2020.05.010 PMID: 32446956
- Lan W, Wu X, Chen Q, Peng W, Wang J, Chen YP. GANLDA: Graph attention network for lncRNA-disease associations prediction. Neurocomputing 2022; 469: 384-93. doi: 10.1016/j.neucom.2020.09.094
- Wu X, Lan W, Chen Q, Dong Y, Liu J, Peng W. Inferring LncRNA-disease associations based on graph autoencoder matrix completion. Comput Biol Chem 2020; 87: 107282. doi: 10.1016/j.compbiolchem.2020.107282 PMID: 32502934
- Shi H, Zhang X, Tang L, Liu L. Heterogeneous graph neural network for lncRNA-disease association prediction. Sci Rep 2022; 12(1): 17519. doi: 10.1038/s41598-022-22447-y PMID: 36266433
- Huang YA, Huang ZA, You ZH, et al. Predicting lncRNA-miRNA interaction via graph convolution auto-encoder. Front Genet 2019; 10: 758. doi: 10.3389/fgene.2019.00758 PMID: 31555320
- Yang S, Wang Y, Lin Y, Shao D, He K, Huang L. LncMirNet: Predicting LncRNAmiRNA interaction based on deep learning of ribonucleic acid sequences. Molecules 2020; 25(19): 4372. doi: 10.3390/molecules25194372 PMID: 32977679
- Ge M, Li A, Wang M. A bipartite network-based method for prediction of long non-coding rnaprotein interactions. Genomics Proteomics Bioinformatics 2016; 14(1): 62-71. doi: 10.1016/j.gpb.2016.01.004 PMID: 26917505
- Song L, Langfelder P, Horvath S. Comparison of co-expression measures: Mutual information, correlation, and model based indices. BMC Bioinformatics 2012; 13(1): 328. doi: 10.1186/1471-2105-13-328 PMID: 23217028
- Butte AJ, Kohane IS. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2000; 418-29. PMID: 10902190
- Khanin R, Wit E. How scale-free are biological networks. J Comput Biol 2006; 13(3): 810-8. doi: 10.1089/cmb.2006.13.810 PMID: 16706727
- Clote P. Are RNA networks scale-free? J Math Biol 2020; 80(5): 1291-321. doi: 10.1007/s00285-019-01463-z PMID: 31950258
- Wang C, Shi H, Chen L, Li X, Cao G, Hu X. Identification of key lncRNAs associated with atherosclerosis progression based on public datasets. Front Genet 2019; 10: 123. doi: 10.3389/fgene.2019.00123 PMID: 30873207
- Zhang J, Le TD, Liu L, Li J. Inferring and analyzing module-specific lncRNAmRNA causal regulatory networks in human cancer. Brief Bioinform 2019; 20(4): 1403-19. doi: 10.1093/bib/bby008 PMID: 29401217
- Gerlach W, Giegerich R. GUUGle: A utility for fast exact matching under RNA complementary rules including GU base pairing. Bioinformatics 2006; 22(6): 762-4. doi: 10.1093/bioinformatics/btk041 PMID: 16403789
- Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL. Thermodynamics of RNARNA binding. Bioinformatics 2006; 22(10): 1177-82. doi: 10.1093/bioinformatics/btl024 PMID: 16446276
- Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL. Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 2006; 1(1): 3. doi: 10.1186/1748-7188-1-3 PMID: 16722605
- Tafer H, Hofacker IL. RNAplex: A fast tool for RNARNA interaction search. Bioinformatics 2008; 24(22): 2657-63. doi: 10.1093/bioinformatics/btn193 PMID: 18434344
- Busch A, Richter AS, Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 2008; 24(24): 2849-56. doi: 10.1093/bioinformatics/btn544 PMID: 18940824
- Alkan F, Wenzel A, Palasca O, et al. RIsearch2: Suffix array-based large-scale prediction of RNARNA interactions and siRNA off-targets. Nucleic Acids Res 2017; 45(8): gkw1325. doi: 10.1093/nar/gkw1325 PMID: 28108657
- Li J, Ma W, Zeng P, et al. LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 2015; 16(5): 806-12. doi: 10.1093/bib/bbu048 PMID: 25524864
- Hu R, Sun X. lncRNATargets: A platform for lncRNA target prediction based on nucleic acid thermodynamics. J Bioinform Comput Biol 2016; 14(4): 1650016. doi: 10.1142/S0219720016500165 PMID: 27306075
- Fukunaga T, Hamada M. RIblast: An ultrafast RNARNA interaction prediction system based on a seed-and-extension approach. Bioinformatics 2017; 33(17): 2666-74. doi: 10.1093/bioinformatics/btx287 PMID: 28459942
- Ye H, Meehan J, Tong W, Hong H. Alignment of short reads: A crucial step for application of next-generation sequencing data in precision medicine. Pharmaceutics 2015; 7(4): 523-41. doi: 10.3390/pharmaceutics7040523 PMID: 26610555
- Kato Y, Sato K, Hamada M, Watanabe Y, Asai K, Akutsu T. RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming. Bioinformatics 2010; 26(18): i460-6. doi: 10.1093/bioinformatics/btq372 PMID: 20823308
- Terai G, Iwakiri J, Kameda T, Hamada M, Asai K. Comprehensive prediction of lncRNA-RNA interactions in human transcriptome. BMC Genomics 2016; 17(S1): 12. doi: 10.1186/s12864-015-2307-5
- Liao Q, Liu C, Yuan X, et al. Large-scale prediction of long non-coding RNA functions in a codingnon-coding gene co-expression network. Nucleic Acids Res 2011; 39(9): 3864-78. doi: 10.1093/nar/gkq1348 PMID: 21247874
- Wang K, Lu Y, Zhao Z, Zhang C. Bioinformatics-based analysis of lncRNA-mRNA interaction network of mild hepatic encephalopathy in cirrhosis. Comput Math Methods Med 2021; 2021: 1-10. doi: 10.1155/2021/7777699 PMID: 34938356
- Yu W, Wang W, Yu X. Investigation of lncRNA-mRNA co-expression network in ETV6-RUNX1-positive pediatric B-cell acute lymphoblastic leukemia. PLoS One 2021; 16(6): e0253012. doi: 10.1371/journal.pone.0253012 PMID: 34101758
- Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147(2): 358-69. doi: 10.1016/j.cell.2011.09.028 PMID: 22000014
- Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8. doi: 10.1038/nature11993 PMID: 23446346
- Zhang X, Wang S, Wang H, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 2019; 18(1): 20. doi: 10.1186/s12943-018-0935-5 PMID: 30717751
- Olgun G, Sahin O, Tastan O. Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes. BMC Genomics 2018; 19(1): 650. doi: 10.1186/s12864-018-5006-1 PMID: 30180792
- Paci P, Colombo T, Farina L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 2014; 8(1): 83. doi: 10.1186/1752-0509-8-83 PMID: 25033876
- Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81(1): 145-66. doi: 10.1146/annurev-biochem-051410-092902 PMID: 22663078
- Peng L, Liu F, Yang J, et al. Probing lncRNAprotein interactions: Data repositories, models, and algorithms. Front Genet 2020; 10: 1346. doi: 10.3389/fgene.2019.01346 PMID: 32082358
- Li A, Ge M, Zhang Y, Peng C, Wang M. Predicting long noncoding RNA and protein interactions using heterogeneous network model. BioMed Res Int 2015; 2015: 1-11. doi: 10.1155/2015/671950 PMID: 26839884
- Hao Y, Wu W, Li H, Yuan J, Luo J, Zhao Y. NPInter v3.0: An upgraded database of noncoding RNA-associated interactions. Database 2016; 2016: baw057.
- Zhao Y, Li H, Fang S, et al. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 2016; 44(D1): D203-8. doi: 10.1093/nar/gkv1252 PMID: 26586799
- Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: Quality-controlled proteinprotein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8. doi: 10.1093/nar/gkw937 PMID: 27924014
- Zhang W, Qu Q, Zhang Y, Wang W. The linear neighborhood propagation method for predicting long non-coding RNAprotein interactions. Neurocomputing 2018; 273: 526-34. doi: 10.1016/j.neucom.2017.07.065
- Xie G, Wu C, Sun Y, Fan Z, Liu J. LPI-IBNRA: Long non-coding RNA-protein interaction prediction based on improved bipartite network recommender algorithm. Front Genet 2019; 10: 343. doi: 10.3389/fgene.2019.00343 PMID: 31057602
- Bateman A, Martin M-J, Orchard S, et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49(D1): D480-9. doi: 10.1093/nar/gkaa1100 PMID: 33237286
- Liu H, Ren G, Hu H, et al. LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization. Oncotarget 2017; 8(61): 103975-84. doi: 10.18632/oncotarget.21934 PMID: 29262614
- Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147(1): 195-7. doi: 10.1016/0022-2836(81)90087-5 PMID: 7265238
- Hu H, Zhang L, Ai H, et al. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy. RNA Biol 2018; 15(6): 1-10. doi: 10.1080/15476286.2018.1457935 PMID: 29583068
- Zhang W, Yue X, Tang G, Wu W, Huang F, Zhang X. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLOS Comput Biol 2018; 14(12): e1006616. doi: 10.1371/journal.pcbi.1006616 PMID: 30533006
- Pandurangan AP, Stahlhacke J, Oates ME, Smithers B, Gough J. The SUPERFAMILY 2.0 database: A significant proteome update and a new webserver. Nucleic Acids Res 2019; 47(D1): D490-4. doi: 10.1093/nar/gky1130 PMID: 30445555
- Valdeolivas A, Tichit L, Navarro C, et al. Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics 2019; 35(3): 497-505. doi: 10.1093/bioinformatics/bty637 PMID: 30020411
- Song J, Tian S, Yu L, et al. RLF-LPI: An ensemble learning framework using sequence information for predicting lncRNA-protein interaction based on AE-ResLSTM and fuzzy decision. Math Biosci Eng 2022; 19(5): 4749-64. doi: 10.3934/mbe.2022222 PMID: 35430839
- Huang L, Jiao S, Yang S, et al. LGFC-CNN: Prediction of lncRNA-protein interactions by using multiple types of features through deep learning. Genes 2021; 12(11): 1689. doi: 10.3390/genes12111689 PMID: 34828296
- Shaw D, Chen H, Xie M, Jiang T. DeepLPI: A multimodal deep learning method for predicting the interactions between lncRNAs and protein isoforms. BMC Bioinformatics 2021; 22(1): 24. doi: 10.1186/s12859-020-03914-7 PMID: 33461501
- Hu H, Zhu C, Ai H, et al. LPI-ETSLP: LncRNAprotein interaction prediction using eigenvalue transformation-based semi-supervised link prediction. Mol Biosyst 2017; 13(9): 1781-7. doi: 10.1039/C7MB00290D PMID: 28702594
- Lu Q, Ren S, Lu M, et al. Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 2013; 14(1): 651. doi: 10.1186/1471-2164-14-651 PMID: 24063787
- Li Y, Sun H, Feng S, Zhang Q, Han S, Du W. Capsule-LPI: A LncRNAprotein interaction predicting tool based on a capsule network. BMC Bioinformatics 2021; 22(1): 246. doi: 10.1186/s12859-021-04171-y PMID: 33985444
- Li Y, Wei L, Wang C, et al. LPInsider: A webserver for lncRNAprotein interaction extraction from the literature. BMC Bioinformatics 2022; 23(1): 135. doi: 10.1186/s12859-022-04665-3 PMID: 35428172
- Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG. cat RAPID omics: A web server for large-scale prediction of proteinRNA interactions. Bioinformatics 2013; 29(22): 2928-30. doi: 10.1093/bioinformatics/btt495 PMID: 23975767
- Tian Z, He W, Tang J, et al. Identification of important modules and biomarkers in breast cancer based on WGCNA. OncoTargets Ther 2020; 13: 6805-17. doi: 10.2147/OTT.S258439 PMID: 32764968
- Rasila T, Saavalainen O, Attalla H, et al. Astroprincin (FAM171A1, C10orf38). Am J Pathol 2019; 189(1): 177-89. doi: 10.1016/j.ajpath.2018.09.006 PMID: 30312582
- Layman AAK, Deng G, OLeary CE, et al. Ndfip1 restricts mTORC1 signalling and glycolysis in regulatory T cells to prevent autoinflammatory disease. Nat Commun 2017; 8(1): 15677. doi: 10.1038/ncomms15677 PMID: 28580955
- Liu YQ, Wang XL, Cheng X, et al. Skp1 in lung cancer: Clinical significance and therapeutic efficacy of its small molecule inhibitors. Oncotarget 2015; 6(33): 34953-67. doi: 10.18632/oncotarget.5547 PMID: 26474281
- Ma N, Tie C, Yu B, Zhang W, Wan J. Identifying lncRNAmiRNAmRNA networks to investigate Alzheimers disease pathogenesis and therapy strategy. Aging 2020; 12(3): 2897-920. doi: 10.18632/aging.102785 PMID: 32035423
- Zhou M, Zhao H, Wang X, Sun J, Su J. Analysis of long noncoding RNAs highlights region-specific altered expression patterns and diagnostic roles in Alzheimers disease. Brief Bioinform 2019; 20(2): 598-608. doi: 10.1093/bib/bby021 PMID: 29672663
- Liang JW, Fang ZY, Huang Y, et al. Application of weighted gene co-expression network analysis to explore the key genes in Alzheimers Disease. J Alzheimers Dis 2018; 65(4): 1353-64. doi: 10.3233/JAD-180400 PMID: 30124448
- Miller JA, Oldham MC, Geschwind DH. A systems level analysis of transcriptional changes in Alzheimers disease and normal aging. J Neurosci 2008; 28(6): 1410-20. doi: 10.1523/JNEUROSCI.4098-07.2008 PMID: 18256261
- Fukunaga T, Iwakiri J, Ono Y, Hamada M. LncRRIsearch: A web server for lncRNA-RNA interaction prediction integrated with tissue-specific expression and subcellular localization data. Front Genet 2019; 10: 462. doi: 10.3389/fgene.2019.00462 PMID: 31191601
- Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005. doi: 10.7554/eLife.05005 PMID: 26267216
- Paraskevopoulou MD, Vlachos IS, Karagkouni D, et al. DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 2016; 44(D1): D231-8. doi: 10.1093/nar/gkv1270 PMID: 26612864
- Wu T, Wang J, Liu C, et al. NPInter: The noncoding RNAs and protein related biomacromolecules interaction database. Nucleic Acids Res 2006; 34(90001): D150-2. doi: 10.1093/nar/gkj025 PMID: 16381834
- Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and proteinRNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(D1): D92-7. doi: 10.1093/nar/gkt1248 PMID: 24297251
- Seemann SE, Menzel P, Backofen R, Gorodkin J. The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences. Nucleic Acids Res 2011; 39(Web Server issue): W107-11.
- Wong L, Huang YA, You ZH, Chen ZH, Cao MY. LNRLMI: Linear neighbour representation for predicting lncRNA‐miRNA interactions. J Cell Mol Med 2020; 24(1): 79-87. doi: 10.1111/jcmm.14583 PMID: 31568653
- Jeggari A, Marks DS, Larsson E. miRcode: A map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 2012; 28(15): 2062-3. doi: 10.1093/bioinformatics/bts344 PMID: 22718787
- Furió-Tarí P, Tarazona S, Gabaldón T, Enright AJ, Conesa A. spongeScan: A web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res 2016; 44(W1): W176-80. doi: 10.1093/nar/gkw443 PMID: 27198221
- Pian C, Zhang G, Tu T, Ma X, Li F. LncCeRBase: A database of experimentally validated human competing endogenous long non-coding RNAs. Database 2018; 2018: bay061. doi: 10.1093/database/bay061
- Zhao Q, Zhang Y, Hu H, Ren G, Zhang W, Liu H. IRWNRLPI: Integrating random walk and neighborhood regularized logistic matrix factorization for lncRNA-protein interaction prediction. Front Genet 2018; 9: 239. doi: 10.3389/fgene.2018.00239 PMID: 30023002
- Han S, Yang X, Sun H, et al. LION: An integrated R package for effective prediction of ncRNAprotein interaction. Brief Bioinform 2022; 23(6): bbac420. doi: 10.1093/bib/bbac420 PMID: 36155620
- Zhang T, Wang M, Xi J, Li A. LPGNMF: Predicting long noncoding RNA and protein interaction using graph regularized nonnegative matrix factorization. IEEE/ACM Trans Comput Biol Bioinform 2020; 17(1): 189-97.
Supplementary files
